Биология ва тиббиёт муаммолари 2025, №4.1 (164)
Subject of the article
ПРОФИЛАКТИК СКРИНИНГ ХИЗМАТЛАРИНИ АВТОМАТЛАШТИРИШ ОРҚАЛИ ТИББИЁТ МУАССАСАЛАРИДА САМАРАДОРЛИКНИ ОШИРИШ (36-40)
Authors
Жиянбаев Отабек Эшдавлатович, Насимов Рашид Ҳамид ўғли, Абдуллаев Иброҳимжон Ниғматилла ўғли
Institution
1 - Тиббиет ходимларининг касбий малакасини ошириш маркази, Ўзбекистон Республикаси, Тошкент ш.; 2 - Тошкент давлат иқтисодиёт университети, Ўзбекистон Республикаси, Тошкент ш.
Abstract
Ушбу мақолада профилактик скрининг хизматларини автоматлаштириш орқали тиббиёт муассасаларида хизмат кўрсатиш самарадорлигини ошириш масалалари ёритилган. Скрининг тадбирлари аҳоли саломатлигини эрта баҳолаш ва хавф омилларини аниқлашда муҳим аҳамият касб этади. Бироқ, мавжуд тизимда инсон ресурслари чекланганлиги, маълумотлар таҳлилининг қўлда бажарилиши ва ташкилий кечикишлар туфайли скрининг самарадорлиги паст бўлиши мумкин. Мақолада рақамли технологиялар, сунъий интеллект, электрон соғлиқни сақлаш тизимлари ва автоматлаштирилган алгоритмлар орқали бу муаммоларни ҳал этиш йўллари таклиф этилади. Тадқиқот натижалари шуни кўрсатдики, автоматлаштирилган профилактик скрининг тизимлари орқали нафақат ташхис аниқлиги ошади, балки шифокорларнинг иш юклами камаяди, хизмат кўрсатиш тезлашади ва ресурслардан самарали фойдаланилади.
Key words
профилактик скрининг, автоматлаштириш, тиббиёт муассасаси, сунъий интеллект, рақамли соғлиқни сақлаш, диагностика, самарадорлик.
Literature
1. Никитина А.С., Пак А.В. Инновационные подходы в реализации скрининговых программ. // Медицинская техника. – 2023. – №2. – С. 22–28. 2. WHO/ITU. Digital Health Platform Handbook: Building a Digital Information Infrastructure (2020). Geneva, 2020. – 86 p. 3. United Nations Development Programme (UNDP). AI and Digital Health: The Future of Pre-ventive Care. – New York, 2023. – 49 p. 4. Jahan S., Lee H.Y., Park S.Y. Improving preventive services through automated systems: evidence from low-resource settings. // International Journal of Medical Informatics. – 2022. – Vol. 165. – P. 104820. 5. World Health Organization (WHO). Screening programmes: a short guide. WHO Regional Office for Europe, 2020. – 66 p. 6. Mirametov A.B., Abdullayev I.N., Nazirov R.M., Tashev B.J. Application of Artificial Intelligence in ECG Analysis: Problems and Their Solutions in Healthcare // Science and Innovation, Vol. 3, Issue 3. – March 2024. – P. 110–115. 7. Abdullayev I.N., Shakarov F.Q., Umarova D.A. Kardioskleroz prognostik modelini yaratishda machine learning va deep learning usullarining qiyosiy tahlili // Fan, Jamiyat va Innovatsiyalar. – 2025. – T. 2. – №19. – B. 22–24. 8. Jiyanbayev O.E., Abdullayev I.N. Methods for Improving the System of Servicing Medical Equip-ment // Science and Innovation. – 2025. – Vol. 4. – Issue 2. – P. 83–85. 9. Abdullayev I.N., Karabayeva L.X., Yusupova N.S. Miokard kardiosklerozi tashxisida sun’iy neyron tarmoqlarining qo‘llanilishi: zamonaviy yondashuvlar // ScienceResearch.com. – 2025. – B. 103–105. 10. Jiyanbayev O.E., Abdullayev I.N. Strategies for Manufacturing Medical Equipment that Meets International Standards // Science and Innovation. – 2025. – Vol. 4. – Issue 2. – P. 78–80. 11. Abdullayev I.N., Tashev B.J., Mirametov A.B. Sun’iy intellekt yordamida yurak kasalliklarini prognozlash modellari ishonchliligi // Fan, Jamiyat va Innovatsiyalar. – 2025. – T. 2. – №19. – B. 16–17. 12. Abdullayev I.N., Yusupova N.S., Tashev B.J. Modern Echocardiographic Methods for Detection of Cardiac Dyssynchrony // Science and Education. – 2025. – Vol. 6. – Issue 2. – P. 75–77. 13. Jiyanbayev O.E., Abdullayev I.N. Effective Resource Management in Medical Facilities Through Artificial Intelligence // International Journal of Medical Sciences and Clinical Research. – 2024. – Vol. 4. – Issue 7. – P. 39–43. 14. Magrupov T.M., Nazirov R.M., Abdullayev I.N. Formation of a Database of Lung Disease Sound Signals // Science and Innovation. – 2024. – Vol. 3. – Issue 9. – P. 90–92. 15. Abdullayev I.N., Yunusxo‘jayeva M.Z., Elmurotova D.B. Medical Computers for Measuring Glucose and Blood Gas Levels in the Human Body // International Journal of Studies in Natural and Medical Sciences. – 2023. – Vol. 2. – Issue 5. – P. 121–123. 16. Nematov Sh.Q., Kamolova Y.M., Abdullayev I.N. Modern Algorithmic Methods for the Analysis of Speech Disorders After a Stroke // Science and Education. – 2023. – Vol. 4. – Issue 6. – P. 452–453. 17. Dar SU, Yurt M, Karacan L, et al. Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE transactions on medical imaging, 2019; 38(10): 2375–2388. 18. Sudre CH, Li W, Vercauteren T, et al. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2017: 240–248. 19. Jiyanbayev , O., & Abdullayev , I. (2025). Tibbiyot muassasalarida tibbiy jihozlarni profilaktik texnik xizmat ko‘rsatish tizimini takomillashtirish. Universal Xalqaro Ilmiy Jurnal, 2(4.5), 430–432. Retrieved from https://inlibrary.uz/index.php/universaljurnal/article/view/111647 20. Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 2021; 18: 203–211. 21. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015: 234–241. 22. Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. Journal of Cardiovascular Magnetic Resonance, 2018; 20(1): 65.