Журнал кардиореспираторных исследований 2025. №4


Subject of the article

ПАТОГЕНЕЗ И КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ КАРДИОВАСКУЛЯРНОЙ АВТОНОМНОЙ НЕЙРОПАТИИ (23-26)

Authors

Хайдарова Г.А., Тригулова Р.Х., Алиева А.В.

Institution

Республиканский специализированный Научно-практический медицинский центр кардиологии

Abstract

Кардиоваскулярная автономная нейропатия (KAН) — одно из наиболее частых и опасных осложнений, характеризующихся поражением автономных нервных волокон сердца и сосудов. Механизмы развития включают хроническую гипергликемию, окислительный стресс, воспаление, микроангиопатию и митохондриальные нарушения. В статье рассмотрены ключевые звенья патогенеза и их клиническое значение. Согласно данным American Diabetes Association (ADA) и European Society of Cardiology (ESC), КАН является предиктором неблагоприятных исходов у пациентов с диабетом. Частота выявления КАН у пациентов с сахарным диабетом 1 типа варьирует от 20 до 40%, а при диабете 2 типа — от 15 до 30% в зависимости от критериев диагностики и длительности заболевания. При этом на ранних стадиях КАН может протекать бессимптомно, что осложняет своевременное выявление.

Key words

Кардиоваскулярная автономная нейропатия (КАН), CAN, caхарный диабет, автономная регуляция, гликемия, симпатическая и парасимпатическая система, сердечная- сосудистая система.

Literature

Duque A, Mediano MFF, De Lorenzo A. Cardiovascular autonomic neuropathy in diabetes. PMC8192252. 2022. Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment. World J Diabetes. 2018;9(1):1‑24. Eleftheriadou I et al. Cardiovascular autonomic neuropathy in diabetes: management update. Diabetologia. 2024. Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol. 2020;11:617459. American Diabetes Association. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes—2024. Diabetes Care. 2024;47(Suppl. 1):S231–S239. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. The DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86. Pop-Busui R, Low PA, Waberski BH, Martin CL, Albers JW, Feldman EL, et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the DCCT/EDIC study. Circulation. 2009;119(22):2886–93. Ziegler D, Dannehl K, Mühlen H, Spüler M, Gries FA. Prevalence of cardiovascular autonomic dysfunction assessed by spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses at various stages of diabetic neuropathy. Diabet Med. 1992;9(9):806–14. Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care. 2003;26(6):1895–901. Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabetes Metab J. 2019;43(1):3–30. Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, et al. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol. 2000;86(3):309–12. Wu JS, Yang YC, Lin TS, Huang YH, Chen JJ, Lu FH, et al. Epidemiological evidence of altered cardiac autonomic function in subjects with impaired glucose tolerance and newly diagnosed diabetes: the Taichung Community Health Study. Diabetes Care. 2007;30(9):2435–40. Ziegler D, Strom A, Perz S, Rathmann W, Lehnhoff J, Lobmann R, et al. Cardiovascular autonomic neuropathy in type 2 diabetes: results of the population-based KORA study. Diabet Med. 2008;25(4):419–27. Orchard TJ, Lloyd CE, Maser RE, Kuller LH. Why does diabetic autonomic neuropathy predict mortality? Diabetes Care. 1996;19(4):387– 93. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54. Tesfaye S, Chaturvedi N, Eaton SE, Ward JD, Manes C, Ionescu-Tirgoviste C, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352(4):341–50. Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987;316(10):599–606. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31. McClain DA, Crook ED. Hexosamines and insulin resistance. Diabetes. 1996;45(8):1003–9. Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004;25(4):612– 28. Navarro JF, Mora C. Role of inflammation in diabetic complications. Nephrol Dial Transplant. 2005;20(12):2601–4. Malik RA, Tesfaye S, Newrick PG, Walker D, Rajbhandari SM, Siddique I, et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia. 2005;48(3):578–85. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79. Spallone V, Bellavere F, Scionti L, Maule S, Quadri R, Bax G, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis. 2011;21(1):69–78. Ziegler D, Papanas N, Vinik AI, Shaw JE. Epidemiology of polyneuropathy in diabetes and prediabetes. Handb Clin Neurol. 2014;126:3– 22. Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 2019;15(6):327–45.