Biomeditsina va amaliyot jurnali, 2022 №1

Maqola mavzusi



DAMINOV Botir Turgunpulatovich KAYUMOV Nodrbek Ulugbekovich


Tashkent Pediatric Medical Institute


The state of some hemodynamic parameters, anthropometry data, and carbohydrate metabolism in patients with chronic kidney disease has been studied. Eighty-two patients with metabolic syndrome (MetS) suffering from chronic kidney disease (CKD) aged from 20 to 59 years were examined. The average age of the concerned persons was 47.3±1.6 years. The studied indicators were analyzed in two groups. One group included 39 patients in whom CKD was formed against the background of type 2 diabetes. In the other group, there were 43 patients with CKD, who developed this pathology due to glomerulonephritis. Statistical processing was carried out using MedCalc software ( ). It has been shown that patients with CKD formed against the background of type 2 diabetes have higher blood pressure, abdominal obesity, and height-weight index than in patients with chronic glomerulonephritis (CGN). Based on this, it seems appropriate to include measures for the early detection and correction of the main components of MS and, above all, hyperinsulinemia and insulin resistance in CKD prevention and treatment programs.

Kalit so'zlar

chronic kidney disease, metabolic syndrome, impaired glucose tolerance, hypertension, obesity, hyperinsulinemia, insulin resistance.


1. Постановление Президента Республики Узбекистан №ПП-4063 «О мерах по профилактике неинфекционных заболеваний, поддержке здорового образа жизни и повышению уровня физической активности населения» от 18 декабря 2018 года. 2. Verma VR, Kumar P, Dash U. Assessing the household economic burden of non-communicable diseases in India: evidence from repeated cross-sectional surveys / BMC Public Health. 2021;21(1):881. Published 2021 May 7. doi:10.1186/s12889-021-10828-3 3. Justin J Boutilier, Timothy C.Y., Chan, Manish Ranjan, Sarang Deo. Risk Stratification for Early Detection of Diabetes and Hypertension in Resource-Limited Settings: Machine Learning Analysis. / J Med Internet Res 2021. vol. 23. Iss. 1. e20123. p. 1-12 4. Prevention and control of non-communicable diseases in the COVID-19 response. Lancet, ISSN: 0140-6736, 2020, vol: 395, Issue: 10238, Page: 1678-1680. 5. Yadav J, Allarakha S, Menon GR, John D, Nair S. Socioeconomic Impact of Hospitalization Expenditure for Treatment of Noncommunicable Diseases in India: A Repeated Cross- Sectional Analysis of National Sample Survey Data, 2004 to 2018. Value Health Reg Issues. 2021 May;24:199-213. doi: 10.1016/j.vhri.2020.12.010. Epub 2021 Apr 10. PMID: 33845450. 6. Christe1 D.M., Vijaya S., Tharangini K. Screening for non-communicable diseases / Int J Reprod Contracept Obstet Gynecol. 2020 Mar;9(3):1092-1096. DOI: 7. Daminov B.T., Makhmudova N. R. Characteristics of the lipid spectrum values in the patients with chronic renal diseases // European science review, 2018. № 7–8, 91-92 8. Sharapov O.N., Daminov B.T., 2, Yarygina S.V. Cardiovascular pathologies in the urban population of the Republic of Uzbekistan with chronic kidney disease on hemodialysis. "Kidneys", volume 9, issue 3, 2020 2020; 9 (3):137-143. doi: 10.22141/2307- 1257.9.3.2020.211459. 9. Даминов Б.Т., Эгамбердиева Д.А., Абдуллаев Ш.С., Рузметова И.А. Сравнительная характеристика больных с кардиоренальным синдромом при наличии и отсутствии у них диабетической нефропатии //Врач-аспирант, 2010, 43 (6.3), 425-431. 10. International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome, 2006. docs/MetS_def_update2006.pdf . 11. Каюмов У.К. Изучение некоторых внутренних болезней при метаболическом синдроме и различных категориях гипергликемии // Евразийский научный журнал. –2017. - №2.– С. 405-408. 12. Peng Ju Liu, Hui Ping Lou and Yan Ning Zhu. Screening for Metabolic Syndrome Using an Integrated Continuous Index Consisting of Waist Circumference and Triglyceride: A Preliminary Cross-sectional Study / Diabetes Metab Syndr Obes. 2020; 13: 2899–2907. Published online 2020 Aug 18. doi: 10.2147/DMSO.S259770/ 13. Swarup S, Goyal A, Grigorova Y, et al. Metabolic Syndrome. [Updated 2021 Aug 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: 14. Kayumov U.K., Kalandarova U.A., Ibragimov A.Yu., Nuritdinov Sh.F Formation of "hard endpoints" in patients with coronary heart disease in the presence of pain syndrome and ischemic changes on ECG / International Journal of Scientific & Engineering Research, 2019, 10 (11), 1120-1123 15. Kayumov U.K., Kalandarova U.A., Ibadova M.U., Ismatova M.N. The formation of a hard «end points» for various risk factors /Journal of Biomedicine and Practice, 2019, vol. 1, issue 1, pp. 79–84.