Doktor axborotnomasi 2025, №4 (121)


Maqola mavzusi

KRANIOSEREBRAL TRAVMALAR OQIBATLARI BO‘LGAN BEMORLARDA NEYROREABILITATSIYA USULLARINING SAMARADORLIGI (61-78)

Mualliflar

M. A. Aliyev, A. M. Mamadaliyev, N. A. Yarmuhammedova

Muassasa

Samarqand davlat tibbiyot universiteti, Samarqand, O‘zbekiston

Annotatsiya

Kranioserebral travma (KST) - uzoq muddatli nogironlik va jiddiy ijtimoiy-iqtisodiy kamchiliklarni keltirib chiqaradigan sog‘liqni saqlash sohasi muammosidir. Erta muddatda ko‘rsatilgan tibbiy yordam omon qolish darajasini oshirgan bo‘lsa-da, uning turli xil oqibatlarida samarali neyroreabilitatsiyaga talab ortib bormoqda. Ushbu maqolada KST va uning oqibatlari uchun mos neyroreabilitatsiya strategiyalari bo‘yicha ma’lumotlarni o‘rganib, kognitiv va psixologik tiklanishga qaratilgan aralashuvlarga e’tibor qaratildi.

Kalit so'zlar

kranioserebral travma oqibatlari; KST; neyroreabilitatsiya; kognitiv reabilitatsiya; virtual reallik; VR; telemonitoring; invaziv bo‘lmagan miya stimulyatsiyasi; robot qurilmalar.

Adabiyotlar

1. Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the Global Incidence of Traumatic Brain Injury. J. Neurosurg. 2019, 130, 1080–1097. [CrossRef] [PubMed] 2. Min, J.H.; Shin, Y.-I. Treatment and Rehabilitation for Traumatic Brain Injury: Current Update. Brain Neuroreha bilit. 2022, 15, e14. [CrossRef] 3. Oberholzer, M.; Müri, R.M. Neurorehabilitation of Traumatic Brain Injury (TBI): A Clinical Review. Med. Sci. 2019, 7, 47. [CrossRef] 4. Naik, A.; Bederson, M.M.; Detchou, D.; Dharnipragada, R.; Hassaneen, W.; Arnold, P.M.; Germano, I.M. Trau matic Brain Injury Mortality and Correlates in Low- and Middle-Income Countries: A Meta-Epidemiological Study. Neurosurgery 2023, 93, 736–744. [CrossRef] 5. James, S.L.; Theadom, A.; Ellenbogen, R.G.; Bannick, M.S.; Montjoy-Venning, W.; Lucchesi, L.R. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87, Erratum in Lancet Neurol. 2021, 20, e7. https://doi.org/10.1016/S1474 4422(21)00383-5. [CrossRef] [PubMed] [PubMed Central] 6. Gardner, R.C.; Dams-O‘Connor, K.; Morrissey, M.R.; Manley, G.T. Geriatric Traumatic Brain Injury: Epidemiol ogy, Outcomes, Knowledge Gaps, and Future Directions. J. Neurotrauma 2018, 35, 889–906. [CrossRef] 7. Dams-O‘Connor, K.; Ketchum, J.M.; Cuthbert, J.P.; Corrigan, J.D.; Hammond, F.M.; Haarbauer-Krupa, J.; Kow alski, R.G.; Miller, A.C. Functional Outcome Trajectories Following Inpatient Rehabilitation for TBI in the United States: A NIDILRR TBIMS and CDCInteragency Collaboration. J. Head Trauma Rehabil. 2020, 35, 127–139. [CrossRef] 8. Devi, Y.; Khan, S.; Rana, P.; Deepak, D.; Dhandapani, M.; Ghai, S.; Gopichandran, L.; Dhandapani, S. Cognitive, Behavioral, and Functional Impairments among Traumatic Brain Injury Survivors: Impact on Caregiver Burden. J. Neurosci. Rural Pract. 2020, 11, 629–635. [CrossRef] 9. Kumar, K.S.; Samuelkamaleshkumar, S.; Viswanathan, A.; Macaden, A.S. Cognitive rehabilitation for adults with traumatic brain injury to improve occupational outcomes. Cochrane Database Syst. Rev. 2017, 6, CD007935. [CrossRef] [PubMed] [PubMed Central] 10. Cicerone, K.D.; Goldin, Y.; Ganci, K.; Rosenbaum, A.; Wethe, J.V.; Langenbahn, D.M.; Malec, J.F.; Bergquist, T.F.; Kingsley, K.; Nagele, D.; et al. Evidence-Based Cognitive Rehabilitation: Systematic Review of the Litera ture From 2009 Through 2014. Arch. Phys. Med. Rehabil. 2019, 100, 1515–1533. [CrossRef] [PubMed] 11. Jeon, H.; Kim, D.Y.; Park, S.W.; Lee, B.S.; Han, H.W.; Jeon, N.; Kim, M.; Kang, M.; Kim, S. A systematic re view of cognitive telerehabilitation in patients with cognitive dysfunction. Front. Neurol. 2025, 15, 1450977. [CrossRef] [PubMed] [PubMed Central] Life 2025, 15, 503 24 of 27 12. Cicerone, K.D.; Dahlberg, C.; Kalmar, K.; Langenbahn, D.M.; Malec, J.F.; Bergquist, T.F.; Felicetti, T.; Giacino, J.T.; Harley, J.P.; Harrington, D.E.; et al. Evidence-based cognitive rehabilitation: Recommendations for clinical practice. Arch. Phys. Med. Rehabil. 2000, 81, 1596–1615. [CrossRef] [PubMed] 13. Bland, D.C.; Zampieri, C.; Damiano, D.L. Effectiveness of Physical Therapy for Improving Gait and Balance in Individuals with Traumatic Brain Injury: A Systematic Review. Brain Inj. 2011, 25, 664–679. [CrossRef] 14. Cumplido-Trasmonte, C.; Barquín-Santos, E.; Gor-García-Fogeda, M.D.; Plaza-Flores, A.; García-Varela, D.; Ibá ñez-Herrán, L.; González-Alted, C.; Díaz-Valles, P.; López-Pascua, C.; Castrillo-Calvillo, A.; et al. STELO: A New Modular Robotic Gait Device for Acquired Brain Injury—Exploring Its Usability. Sensors 2023, 24, 198. [CrossRef] [PubMed] 15. Lippert, J.; Guggisberg, A.G. Diagnostic and Therapeutic Approaches in Neurorehabilitation after Traumatic Brain Injury and Disorders of Consciousness. Clin. Transl. Neurosci. 2023, 7, 21. [CrossRef] 16. Maas,A.I.R.; Menon, D.K.; Manley, G.T.; InTBIR Participants and Investigators. Traumatic Brain Injury: Progress and Challenges in Prevention, Clinical Care, and Research. Lancet Neurol. 2022, 21, 1004–1060. [CrossRef] 17. Andelic, N.; Ye, J.; Tornas, S.; Roe, C.; Lu, J.; Bautz-Holter, E.; Moger, T.; Sigurdardottir, S.; Schanke, A.-K.; Aas, E. Cost Effectiveness Analysis of an Early-Initiated, Continuous Chain of Rehabilitation after Severe Trau matic Brain Injury. J. Neurotrauma 2014, 31, 1313–1320. [CrossRef] 18. Jacob, L.; Cogné, M.; Tenovuo, O.; Røe, C.; Andelic, N.; Majdan, M.; Ranta, J.; Ylen, P.; Dawes, H.; Azouvi, P.; et al. Predictors of Access to Rehabilitation in the Year Following Traumatic Brain Injury: A European Prospec tive and Multi-center Study. Neurorehabil. Neural Repair 2020, 34, 814–830. [CrossRef] 19. Ponsford, J.; Harrison-Felix, C.; Ketchum, J.M.; Spitz, G.; Miller, A.C.; Corrigan, J.D. Outcomes 1 and 2 Years After Moderate to Severe Traumatic Brain Injury: An International Comparative Study. Arch. Phys. Med. Rehabil. 2021, 102, 371–377. [CrossRef] 20. Turner-Stokes, L.; Pick, A.; Nair, A.; Disler, P.B.; Wade, D.T. Multi-Disciplinary Rehabilitation for Acquired Brain Injury in Adults of Working Age. Cochrane Database Syst. Rev. 2015, 12, CD004170. [CrossRef] 21. Truijen, S.; Abdullahi, A.; Bijsterbosch, D.; Van Zoest, E.; Conijn, M.; Wang, Y.; Struyf, N.; Saeys, W. Effect of Home-Based Virtual Reality Training and Telerehabilitation on Balance in Individuals with Parkinson Disease, Multiple Sclerosis, and Stroke: A Systematic Review and Meta-Analysis. Neurol. Sci. 2022, 43, 2995–3006. [CrossRef] [PubMed] 22. Nascimento, A.S.; Fagundes, C.V.; Mendes, F.A.D.S.; Leal, J.C. Effectiveness of Virtual Reality Rehabilitation in Persons with Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mult. Scler. Relat. Disord. 2021, 54, 103128. [CrossRef] [PubMed] 23. Kesikburun, S. Non-Invasive Brain Stimulation in Rehabilitation. Turk. J. Phys. Med. Rehabil. 2022, 68, 1–8. [CrossRef] [PubMed] 24. Hara, T.; Shanmugalingam, A.; McIntyre, A.; Burhan, A.M. The Effect of Non-Invasive Brain Stimulation (NIBS) on Executive Functioning, Attention and Memory in Rehabilitation Patients with Traumatic Brain Injury: A Sys tematic Review. Diagnostics 2021, 11, 627. [CrossRef] 25. Korupolu, R.; Miller, A.; Park, A.; Yozbatiran, N. Neurorehabilitation with Vagus Nerve Stimulation: A Systemat ic Review. Front. Neurol. 2024, 15, 1390217. [CrossRef] 26. Chen, J.; Dong, Y.; Guo, H.; Zhao, T.; Zhang, D.; Jin, S. Efficacy of rTMS Combined with Cognitive Training in TBI with Cognition Disorder: A Systematic Review and Meta-Analysis. Neurol. Sci. 2024, 45, 3683–3697. [CrossRef] 27. Schiff, N.D.; Giacino, J.T.; Butson, C.R.; Choi, E.Y.; Baker, J.L.; O‘Sullivan, K.P.; Janson, A.P.; Bergin, M.; Bronte-Stewart, H.M.; Chua, J.; et al. Thalamic Deep Brain Stimulation in Traumatic Brain Injury: A Phase 1, Randomized Feasibility Study. Nat. Med. 2023, 29, 3162–3174. [CrossRef] 28. Flint, R.D.; Li, Y.; Wang, P.T.; Vaidya, M.; Barry, A.; Ghassemi, M.; Tomic, G.; Brkic, N.; Ripley, D.; Liu, C.; et al. Noninvasively Recorded High-Gamma Signals Improve Synchrony of Force Feedback in a Novel Neuroreha bilitation Brain–Machine Interface for Brain Injury. J. Neural Eng. 2022, 19, 036024. [CrossRef] 29. Sacco, K.; Galetto, V.; Dimitri, D.; Geda, E.; Perotti, F.; Zettin, M.; Geminiani, G.C. Concomitant Use of Tran scranial Direct Current Stimulation and Computer-Assisted Training for the Rehabilitation of Attention in Trau matic Brain Injured Patients: Behavioral and Neuroimaging Results. Front. Behav. Neurosci. 2016, 10, 57. [CrossRef] 30. Quinn, D.K.; Upston, J.; Jones, T.; Brandt, E.; Story-Remer, J.; Fratzke, V.; Wilson, J.K.; Rieger, R.; Hunter, M.A.; Gill, D.; et al. Cerebral Perfusion Effects of Cognitive Training and Transcranial Direct Current Stimulation in Mild-Moderate TBI. Front. Neurol. 2020, 11, 545174. [CrossRef] 31. Li, L.M.; Violante, I.R.; Zimmerman, K.; Leech, R.; Hampshire, A.; Patel, M.; Opitz, A.; McArthur, D.; Jolly, A.; Carmichael, D.W.; et al. Traumatic Axonal Injury Influences the Cognitive Effect of Non-Invasive Brain Stimula tion. Brain 2019, 142, 3280–3293. [CrossRef] [PubMed] 32. Motes, M.A.; Spence, J.S.; Yeatman, K.; Jones, P.M.; Lutrell, M.; O‘Hair, R.; Shakal, S.; DeLaRosa, B.L.; To, W.; Vanneste, S.; et al. High-Definition Transcranial Direct Current Stimulation to Improve Verbal Retrieval Defi cits in Chronic Traumatic Brain Injury. J. Neurotrauma 2020, 37, 170–177. [CrossRef] [PubMed] Life 2025, 15, 503 25 of 27 33. DeFreitas, D.J.; De Carvalho, D.; Paglioni, V.M.; Brunoni, A.R.; Valiengo, L.; Thome-Souza, M.S.; Guirado, V.M.P.; Zaninotto, A.L.; Paiva, W.S. Effects of Transcranial Direct Current Stimulation (tDCS) and Concurrent Cognitive Training on Episodic Memory in Patients with Traumatic Brain Injury: A Double-Blind, Randomised, Placebo-Controlled Study. BMJ Open 2021, 11, e045285. [CrossRef] [PubMed] 34. O‘Neil-Pirozzi, T.M.; Doruk, D.; Thomson, J.M.; Fregni, F. Immediate Memory and Electrophysiologic Effects ofPrefrontal Cortex Transcranial Direct Current Stimulation on Neurotypical Individuals and Individuals with Chronic Trau-matic Brain Injury: A Pilot Study. Int. J. Neurosci. 2017, 127, 592–600. [CrossRef] 35. Vallejo, P.; Cueva, E.; Martínez-Lozada, P.; García-Ríos, C.A.; Miranda-Barros, D.H.; Leon-Rojas, J.E. Repetitive Transcranial Magnetic Stimulation in Stroke: A Literature Review of the Current Role and Controversies of Neu rorehabilitation Through Electromagnetic Pulses. Cureus 2023, 15, e41714. [CrossRef] 36. Lee, S.A.; Kim, M.-K. Effect of Low Frequency Repetitive Transcranial Magnetic Stimulation on Depression and Cognition of Patients with Traumatic Brain Injury: A Randomized Controlled Trial. Med. Sci. Monit. 2018, 24, 8789–8794. [CrossRef] 37. Neville, I.S.; Zaninotto, A.L.; Hayashi, C.Y.; Rodrigues, P.A.; Galhardoni, R.; Ciampi De Andrade, D.; Brunoni, A.R.; Amorim, R.L.O.; Teixeira, M.J.; Paiva, W.S. Repetitive TMS Does Not Improve Cognition in Patients with TBI: A Randomized Double-Blind Trial. Neurology 2019, 93, e190–e199. [CrossRef] 38. Chiang, H.-S.; Shakal, S.; Vanneste, S.; Kraut, M.; Hart, J. Case Report: Improving Verbal Retrieval Deficits With High Definition Transcranial Direct Current Stimulation Targeting the Pre-Supplementary Motor Area in a Patient With Chronic Traumatic Brain Injury. Front. Neurol. 2021, 12, 678518. [CrossRef] 39. Eilam-Stock, T.; George, A.; Charvet, L.E. Cognitive Telerehabilitation with Transcranial Direct Current Stimula tion Improves Cognitive and Emotional Functioning Following a Traumatic Brain Injury: A Case Study. Arch. Clin. Neuro Psychol. 2021, 36, 442–453. [CrossRef] 40. Bonanno, M.; De Luca, R.; De Nunzio, A.M.; Quartarone, A.; Calabrò, R.S. Innovative Technologies in the Neu rorehabilitation of Traumatic Brain Injury: A Systematic Review. Brain Sci. 2022, 12, 1678. [CrossRef] 41. Nieto-Escamez, F.; Cortés-Pérez, I.; Obrero-Gaitán, E.; Fusco, A. Virtual Reality Applications in Neurorehabilita tion: Current Panorama and Challenges. Brain Sci. 2023, 13, 819. [CrossRef] [PubMed] 42. Voinescu, A.; Sui, J.; Stanton Fraser, D. Virtual Reality in Neurorehabilitation: An Umbrella Review of Me-ta Analyses. J. Clin. Med. 2021, 10, 1478. [CrossRef] [PubMed] 43. Kim,W.-S.; Lee, K.; Kim, S.; Cho, S.; Paik, N.-J. Transcranial Direct Current Stimulation for the Treatment of Motor Impairment Following Traumatic Brain Injury. J. Neuroeng. Rehabil. 2019, 16, 14. [CrossRef] [PubMed] 44. Llorens, R.; Fuentes, M.A.; Borrego, A.; Latorre, J.; Alcañiz, M.; Colomer, C.; Noé, E. Effectiveness of a Com bined Transcranial Direct Current Stimulation and Virtual Reality-Based Intervention on Upper Limb Function in Chronic Individuals Post-Stroke with Persistent Severe Hemiparesis: A Randomized Controlled Trial. J. Neu roeng. Rehabil. 2021, 18, 108. [CrossRef] 45. Liu, M.; Wilder, S.; Sanford, S.; Glassen, M.; Dewil, S.; Saleh, S.; Nataraj, R. Augmented Feedback Modes during Functional Grasp Training with an Intelligent Glove and Virtual Reality for Persons with Traumatic Brain Injury. Front. Robot. AI 2023, 10, 1230086. [CrossRef] 46. DeLuca,R.; Bonanno, M.; Rifici, C.; Pollicino, P.; Caminiti, A.; Morone, G.; Calabrò, R.S. Does Non-Immersive Virtual Reality Improve Attention Processes in Severe Traumatic Brain Injury? Encouraging Data from a Pilot Study. Brain Sci. 2022, 12, 1211. [CrossRef] 47. Ettenhofer, M.L.; Guise, B.; Brandler, B.; Bittner, K.; Gimbel, S.I.; Cordero, E.; Nelson Schmitt, S.; Williams, K.; Cox, D.; Roy, M.J.; et al. Neurocognitive Driving Rehabilitation in Virtual Environments (NeuroDRIVE): A Pilot Clinical Trial for Chronic Traumatic Brain Injury. NeuroRehabilitation 2019, 44, 531–544. [CrossRef] 48. Tefertiller, C.; Hays, K.; Natale, A.; O‘Dell, D.; Ketchum, J.; Sevigny, M.; Eagye, C.B.; Philippus, A.; Harrison Felix, C. Results From aRandomized Controlled Trial to Address Balance Deficits After Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2019, 100, 1409–1416. [CrossRef] 49. Chanpimol, S.; Seamon, B.; Hernandez, H.; Harris-Love, M.; Blackman, M.R. Using Xbox Kinect Motion Capture Tech-nology to Improve Clinical Rehabilitation Outcomes for Balance and Cardiovascular Health in an Individual with Chronic TBI. Arch. Physiother. 2017, 7, 6. [CrossRef] 50. Gottshall, K.R.; Sessoms, P.H. Improvements in Dizziness and Imbalance Results from Using a Multi Disciplinary and Multi Sensory Approach to Vestibular Physical Therapy—A Case Study. Front. Syst. Neurosci. 2015, 9, 106. [CrossRef] 51. DeLuca, R.; Bonanno, M.; Marra, A.; Rifici, C.; Pollicino, P.; Caminiti, A.; Castorina, M.V.; Santamato, A.; Quartarone, A.; Calabrò, R.S. Can Virtual Reality Cognitive Rehabilitation Improve Executive Functioning and Coping Strategies in Traumatic Brain Injury? A Pilot Study. Brain Sci. 2023, 13, 578. [CrossRef] [PubMed] 52. Alt Murphy, M.; Pradhan, S.; Levin, M.F.; Hancock, N.J. Uptake of Technology for Neurorehabilitation in Clini cal Practice: A Scoping Review. Phys. Ther. 2024, 104, 140. [CrossRef] [PubMed] Life 2025, 15, 503 26 of 27 53. VanDenBerg, M.; Sherrington, C.; Killington, M.; Smith, S.; Bongers, B.; Hassett, L.; Crotty, M. Video and Com put-er-Based Interactive Exercises Are Safe and Improve Task-Specific Balance in Geriatric and Neurological Rehabilitation: A Randomised Trial. J. Physiother. 2016, 62, 20–28. [CrossRef] [PubMed] 54. Rodríguez-Rajo, P.; García-Rudolph, A.; Sánchez-Carrión, R.; Aparicio-López, C.; Enseñat-Cantallops, A.; García-Molina, A. Computerized Social Cognitive Training in the Subacute Phase after Traumatic Brain Injury: A Quasi Randomized Controlled Trial. Appl. Neuropsychol. Adult 2024, 31, 540–553. [CrossRef] 55. Liu, B.; Lu, H. Research on Computer Assisted Cognitive Rehabilitation for Cognitive Dysfunction after Traumat ic Brain Injury. J. Phys. Conf. Ser. 2021, 1915, 032025. [CrossRef] 56. Martin, S.; Armstrong, E.; Thomson, E.; Vargiu, E.; Solà, M.; Dauwalder, S.; Miralles, F.; Daly Lynn, J. A Quali tative Study Adopting a User-Centered Approach to Design and Validate a Brain Computer Interface for Cognitive Rehabilitation for People with Brain Injury. Assist. Technol. 2018, 30, 233–241. [CrossRef] 57. Del Pino, R.; Díez-Cirarda, M.; Ustarroz-Aguirre, I.; Gonzalez-Larragan, S.; Caprino, M.; Busnatu, S.; Gand, K.; Schlieter, H.; Gabilondo, I.; Gómez-Esteban, J.C. Costs and Effects of Telerehabilitation in Neurological and Car diological Diseases: A Systematic Review. Front. Med. 2022, 9, 832229. [CrossRef] 58. Federico, S.; Cacciante, L.; Cie´slik, B.; Turolla, A.; Agostini, M.; Kiper, P.; Picelli, A. Telerehabilitation for Neu rolog-ical Motor Impairment: A Systematic Review and Meta-Analysis on Quality of Life, Satisfaction, and Ac ceptance in Stroke, Multiple Sclerosis, and Parkinson’s Disease. J. Clin. Med. 2024, 13, 299. [CrossRef] 59. Simmich, J.; Ross, M.H.; Russell, T. Real-Time Video Telerehabilitation Shows Comparable Satisfaction and Simi-lar or Better Attendance and Adherence Compared with in-Person Physiotherapy: A Systematic Review. J. Physi other. 2024, 70, 181–192. [CrossRef] 60. DeLuca, R.; Maggio, M.G.; Naro, A.; Portaro, S.; Cannavò, A.; Calabrò, R.S. Can Patients with Severe Traumatic Brain Injury Be Trained with Cognitive Telerehabilitation? An Inpatient Feasibility and Usability Study. J. Clin. Neurosci. 2020, 79, 246–250. [CrossRef] 61. Raso, M.G.; Arcuri, F.; Liperoti, S.; Mercurio, L.; Mauro, A.; Cusato, F.; Romania, L.; Serra, S.; Pignolo, L.; Tonin, P.; et al. Telemonitoring of Patients With Chronic Traumatic Brain Injury: A Pilot Study. Front. Neurol. 2021, 12, 598777. [CrossRef] [PubMed] 62. Bell, K.R.; Fann, J.R.; Brockway, J.A.; Cole, W.R.; Bush, N.E.; Dikmen, S.; Hart, T.; Lang, A.J.; Grant, G.; Gahm, G.; et al. Telephone Problem Solving for Service Members with Mild Traumatic Brain Injury: A Random ized, Clinical Trial. J. Neurotrauma 2017, 34, 313–321. [CrossRef] [PubMed] 63. Vuletic, S.; Bell, K.R.; Jain, S.; Bush, N.; Temkin, N.; Fann, J.R.; Stanfill, K.E.; Dikmen, S.; Brockway, J.A.; He, F.; et al. Telephone Problem-Solving Treatment Improves Sleep Quality in Service Members With Combat Related Mild Traumatic Brain Injury: Results From a Randomized Clinical Trial. J. Head Trauma Rehabil. 2016, 31, 147–157. [CrossRef] [PubMed] 64. Oña, E.D.; Cano-de La Cuerda, R.; Sánchez-Herrera, P.; Balaguer, C.; Jardón, A. A Review of Robotics in Neu rorehabilitation: Towards an Automated Process for Upper Limb. J. Healthc. Eng. 2018, 2018, 9758939. [CrossRef] 65. Chang, W.H.; Kim, Y.-H. Robot-Assisted Therapy in Stroke Rehabilitation. J. Stroke 2013, 15, 174. [CrossRef] 66. Esquenazi, A.; Lee, S.; Wikoff, A.; Packel, A.; Toczylowski, T.; Feeley, J. A Comparison of Locomotor Therapy Interventions: Partial-Body Weight−Supported Treadmill, Lokomat, and G-EO Training in People With Traumatic Brain Injury. PMR 2017, 9, 839–846. [CrossRef] 67. Maggio, M.G.; Torrisi, M.; Buda, A.; De Luca, R.; Piazzitta, D.; Cannavò, A.; Leo, A.; Milardi, D.; Manuli, A.; Calabro, R.S. Effects of Robotic Neurorehabilitation through Lokomat plus Virtual Reality on Cognitive Function in Patients with Traumatic Brain Injury: A Retrospective Case-Control Study. Int. J. Neurosci. 2020, 130, 117 123. [CrossRef] 68. Williams, K.; Christenbury, J.; Niemeier, J.P.; Newman, M.; Pinto, S. Is Robotic Gait Training Feasible in Adults With Disorders of Consciousness? J. Head Trauma Rehabil. 2020, 35, E266–E270. [CrossRef] 69. Nolan, K.J.; Karunakaran, K.K.; Ehrenberg, N.; Kesten, A.G. Robotic Exoskeleton Gait Training for Inpatient Rehabilitation in a Young Adult with Traumatic Brain Injury. In Proceedings of the 2018 40th Annual Internation al Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2809–2812. 70. Anderl, E.R.; Trammell, H.J. Facilitating Walking Recovery with Use of a Wearable Robotic Exoskeleton in an Individual with Traumatic Brain Injury and Ataxia: A Case Study. In Proceedings of the 2017 International Sym posium on Wearable Robotics and Rehabilitation (WeRob), Houston, TX, USA, 5–8 November 2017; IEEE: Pis cataway, NJ, USA, 2017; pp. 1–2. 71. Ilyas, C.M.A.; Schmuck, V.; Haque, M.A.; Nasrollahi, K.; Rehm, M.; Moeslund, T.B. Teaching Pepper Robot to Recognize Emotions of Traumatic Brain Injured Patients Using Deep Neural Networks. In Proceedings of the 2019 28th IEEE International Conference on Robot and HumanInteractive Communication (RO-MAN), New Del hi, India, 14–18 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. Life 2025, 15, 503 27 of 27 72. Hamblin, M.R.; Huang, Y.Y.; Heiskanen, V. Non-Mammalian Hosts and Photobiomodulation: Do All Life-Forms Respond to Light? Photochem. Photobiol. 2019, 95, 126–139. [CrossRef] 73. Lin, Y.P.; Ku, C.H.; Chang, C.C.; Chang, S.T. Effects of Intravascular Photobiomodulation on Cognitive Impair ment and Crossed Cerebellar Diaschisis in Patients with Traumatic Brain Injury: A Longitudinal Study. Lasers Med. Sci. 2023, 38, 108. [CrossRef] 74. Carneiro, A.M.C.; Poiani, G.C.; Zaninnoto, A.L.; Lazo Osorio, R.; Oliveira, M.L.; Paiva, W.S.; Zângaro, R.A. Transcranial Photobiomodulation Therapy in the Cognitive Rehabilitation of Patients with Cranioencephalic Trau ma. Photobiomodul. Photomed. Laser Surg. 2019, 37, 657–666. [CrossRef] [PubMed] 75. Henderson, T.A.; Morries, L.D. Multi-Watt Near-Infrared Phototherapy for the Treatment of Comorbid Depres sion: An Open Label Single-Arm Study. Front. Psychiatry 2017, 8, 187. [CrossRef] [PubMed] 76. Hipskind, S.G.; Grover, F.L., Jr.; Fort, T.R.; Helffenstein, D.; Burke, T.J.; Quint, S.A.; Bussiere, G.; Stone, M.; Hurtado, T. Pulsed Transcranial Red/Near-Infrared Light Therapy Using Light-Emitting Diodes Improves Cere bral Blood Flow and Cognitive Function in Veterans with Chronic Traumatic Brain Injury: A Case Series. Pho tomed. Laser Surg. 2018, 37, 77–84. [CrossRef] 77. Chao, L.L.; Barlow, C.; Karimpoor, M.; Lim, L. Changes in Brain Function and Structure After Self-Administered Home Photobiomodulation Treatment in a Concussion Case. Front. Neurol. 2020, 11, 952. [CrossRef] 78. Chao,L.L. Improvements in Gulf War Illness Symptoms After Near-Infrared Transcranial and Intranasal Photobio modulation: TwoCase Reports. Mil. Med. 2019, 184, e568–e574. [CrossRef] 79. Zuo,J.; Tao, Y.; Liu, M.; Feng, L.; Yang, Y.; Liao, L. The effect of family-centered sensory and affective stimula tion on comatose patients with traumatic brain injury: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2021, 115, 103846. [CrossRef] 80. Park, S. Effectiveness of direct and non-direct auditory stimulation on coma arousal after traumatic brain injury. Int. J. Nurs. Pract. 2016, 22, 391–396. [CrossRef] 81. Norwood,M.F.; Lakhani, A.; Watling, D.P.; Marsh, C.H.; Zeeman, H. Efficacy of Multimodal Sensory Therapy in Adult Acquired Brain Injury: A Systematic Review. Neuropsychol. Rev. 2023, 33, 693–713. [CrossRef] [PubMed] [PubMed Central] 82. DeLuca, R.; Lauria, P.; Bonanno, M.; Corallo, F.; Rifici, C.; Castorina, M.V.; Trifirò, S.; Gangemi, A.; Lombardo, C.; Quartarone, A.; et al. Neurophysiological and Psychometric Outcomes in Minimal Consciousness State after Advanced Audio–Video Emotional Stimulation: A Retrospective Study. Brain Sci. 2023, 13, 1619. [CrossRef] 83. Salmani, F.; Mohammadi, E.; Rezvani, M.; Kazemnezhad, A. The effects of family-centered affective stimulation on brain-injured comatose patients’ level of consciousness: A randomized controlled trial. Int. J. Nurs. Stud. 2017, 74, 44–52. [CrossRef] 84. Moattari, M.; Alizadeh Shirazi, F.; Sharifi, N.; Zareh, N. Effects of a Sensory Stimulation by Nurses and Families on Level of Cognitive Function, and Basic Cognitive Sensory Recovery of Comatose Patients With Severe Trau matic Brain Injury: A Randomized Control Trial. Trauma Mon. 2016, 21, e23531. [CrossRef] [PubMed] 85. Abbate, C.; Trimarchi, P.D.; Basile, I.; Mazzucchi, A.; Devalle, G. Sensory stimulation for patients with disorders of consciousness: From stimulation to rehabilitation. Front. Hum. Neurosci. 2014, 8, 616. [CrossRef] [PubMed] [PubMed Central] 86. DeLuca,R.; Bonanno, M.; Vermiglio, G.; Trombetta, G.; Andidero, E.; Caminiti, A.; Pollicino, P.; Rifici, C.; Calabrò, R.S. Robotic Verticalization plus Music Therapy in Chronic Disorders of Consciousness: Promising Re sults from a Pilot Study. Brain Sci. 2022, 12, 1045. [CrossRef] [PubMed] 87. Alashram, A.R.; Annino, G.; Padua, E.; Romagnoli, C.; Mercuri, N.B. Cognitive Rehabilitation Post Traumatic Brain Injury: A Systematic Review for Emerging Use of Virtual Reality Technology. J. Clin. Neurosci. 2019, 66, 209–219. [CrossRef] 88. Suarilah, I.; Zulkarnain, H.; Saragih, I.D.; Lee, B.O. Effectiveness of Telehealth Interventions Among Traumatic Brain Injury Survivors: A Systematic Review and Meta-Analysis. J. Telemed. Telecare 2024, 30, 781–794. [CrossRef] 89. Aulisio, M.C.; Han, D.Y.; Glueck, A.C. Virtual Reality Gaming as a Neurorehabilitation Tool for Brain Injuries in Adults: A Systematic Review. Brain Inj. 2020, 34, 1322–1330. [CrossRef] 90. Ownsworth, T.; Arnautovska, U.; Beadle, E.; Shum, D.H.K.; Moyle, W. Efficacy of Telerehabilitation for Adults With Traumatic Brain Injury: A Systematic Review. J. Head Trauma Rehabil. 2018, 33, E33–E46. [CrossRef]