Биология ва тиббиёт муаммолари 2025 №6 (166)
Тема статьи
СОВРЕМЕННЫЕ ТЕХНОЛОГИИ И СТРАТЕГИИ ПЕРСОНАЛИЗИРОВАННОГО ВОССТАНОВЛЕНИЯ МОЗГА ПОСЛЕ ИНСУЛЬТА: ОТ НЕЙРОМОДУЛЯЦИИ ДО ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ (403-410)
Авторы
Киличев Фаррух Ахмадович
Учреждение
Самаркандский филиал Республиканского научного центра экстренной медицинской помощи, Республика Узбекистан, г. Самарканд
Аннотация
Современная реабилитация после инсульта стремительно развивается за счёт внедрения нейромодуляции, функциональной электростимуляции, роботизированных технологий и интерфейсов мозг-компьютер. В статье рассматриваются принципы действия транскраниальной магнитной стимуляции (rTMS), стимуляции постоянным током (tDCS), эпи-дуральной стимуляции и их значение для восстановле-ния функций мозга. Особое внимание уделено иннова-ционным подходам, включая виртуальную реальность, моторное воображение, зеркальные нейронные сис-темы и физиотерапию. Представлены доказательст-ва эффективности различных вмешательств и пер-спективы их сочетанного применения. Также подчер-кивается роль нейровизуализации в выборе зоны сти-муляции и индивидуализации терапии.
Ключевые слова
инсульт, нейромодуляция, электростимуляция, tDCS, rTMS, CIMT, роботизированная реабилитация, мозг-компьютер, виртуальная реальность.
Литературы
1. H. Nakayama, H.S. Jørgensen, T.S. Olsen и др. (1994). Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Ar-chives of Neurology, 51(6), 931 936. 2. P.M. Pedersen, H.S. Jørgensen, H. Nakayama, H.O. Raaschou, T.S. Olsen (1995). Aphasia in acute stroke: incidence, determinants, and recovery. Annals of Neurology, 38(4), 659 666. 3. S.P. Stone, R.J. Greenwood, P. Patel, P.W. Halligan (1992). Measuring visual neglect in acute stroke and predicting its recovery: the Visual Neglect Recovery Index. Journal of Neurology, Neurosurgery & Psychiatry, 55(6), 431 436. 4. Dodd, K. C., López Larson, M., & et al. (2017). Role of the contralesional vs. ipsilesional hemisphere in post stroke motor recovery and neuromodulation. Frontiers in Human Neuroscience, 11, 469. https://doi.org/10.3389/fnhum.2017.00469 5. Su, F., Jiang, C., Lei, H., et al. (2020). Enhancing brain plasticity to promote stroke recovery. Frontiers in Neurology, 11, 554089. https://doi.org/10.3389/fneur.2020.554089 6. Grefkes, C., & Fink, G. R. (2020). Recovery from stroke: current concepts and future perspectives. Neurological Research and Practice, 2, 17. https://doi.org/10.1186/s42466-020-00060-6 7. Favre, I., et al. (2014). Upper limb recovery after stroke is associated with increased activity in contralesional primary motor cortex and dorsolateral premotor cortex. Stroke, 45(10), 2953 2958. https://doi.org/10.1161/STROKEAHA.113.003168 8. Zhao, L. R. (2018). Enhancing endogenous ca-pacity to repair a stroke: review and future directions. Neurorehabilitation and Neural Repair, 32(10 11), 946 958. https://doi.org/10.1177/1545968317737921 9. Hordacre, B., et al. (2021). Evidence for a window of enhanced plasticity in the human brain after stroke. Neurorehabilitation and Neural Repair, 35(9), 789 793. https://doi.org/10.1177/1545968321992330 10. Ismail, U. N., et al. (2024). A systematic review: enhancing stroke recovery through complementary interventions and brain activation effects. Frontiers in Neuroscience, 18, Article 1437130. https://doi.org/10.3389/fnins.2024.1437130 11. Aderinto, N. (2023). Exploring the transformative influence of neuroplasticity on stroke recovery: A review. Annals of Medicine & Surgery, 85, 4425 4432. https://doi.org/10.1097/MS9.0000000000001137 12. Johansson, B. B. (2000). Brain plasticity and stroke rehabilitation: the Willis lecture. Stroke, 31(1), 223 230. https://doi.org/10.1161/01.STR.31.1.223 13. Rossini, P. M., Calautti, C., Pauri, F., & Baron, J. C. (2003). Post stroke plastic re organisation in the adult brain. The Lancet Neurology, 2(8), 493 502. https://doi.org/10.1016/S1474 4422(03)00485 X 14. Otero Ortega, L., Laso García, F., Rive-ra Llémos, P., Sánchez Kuhn, A., Montaner, J., & Dorado, L. (2021). Recovery after stroke: New insight to promote brain plasticity. Frontiers in Neurology, 12, 768958. https://doi.org/10.3389/fneur.2021.768958 15. Woldag, H., Gerhold, L. L., de Groot, M., Wohlfart, K., Wagner, A., & Hummelsheim, H. (2006). Early prediction of functional outcome after stroke. Brain Injury, 20(10), 1047 1052. https://doi.org/10.1080/02699050600915422 16. Takeuchi, N., & Izumi, S. (2015). Combinations of stroke neurorehabilitation to facilitate motor recovery by targeting plasticity. Frontiers in Human Neuroscience, 9, 503. https://doi.org/10.3389/fnhum.2015.00349 17. Hordacre, B., Moezzi, B., Goldsworthy, M., & Rogasch, N. C. (2021). Evidence for a window of enhanced plasticity in the human brain after stroke. Neurorehabilitation and Neural Repair, 35(9), 789 793. https://doi.org/10.1177/1545968321992330 18. Christidi, F., Orgianelis, I., Merkouris, E., et al. (2024). A comprehensive review on the role of resting state functional magnetic resonance imaging in predicting post stroke motor and sensory outcomes. Neurology International, 16(1), 189 201. https://doi.org/10.3390/neurolint16010012 19. Calautti, C., & Baron, J.-C. (2003). Functional Neuroimaging Studies of Motor Recovery After Ischemic Stroke: A review of methodological issues and clinical relevance. Stroke, 34(6), 1553 1566. https://doi.org/10.1161/01.STR.0000071761.36075.A6 20. Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. J. (2003). Neural correlates of motor recovery after stroke: A longitudinal fMRI study. Brain, 126(Pt 11), 2476 2496. https://doi.org/10.1093/brain/awg245 21. Johansson, B. B. (2000). Brain plasticity and stroke rehabilitation: the Willis lecture. Stroke, 31(1), 223 230. https://doi.org/10.1161/01.STR.31.1.223 22. Li, J., Zhang, X.-W., Zuo, Z.-T., et al. (2018). Cerebral functional reorganization in ischemic stroke after repetitive transcranial magnetic stimulation: An fMRI study. Frontiers in Human Neuroscience, 12, 432. https://doi.org/10.3389/fnhum.2018.00432 23. Ahmed Bani Ahmed, A. (2019). Post stroke motor recovery and cortical organization following Constraint Induced Movement Therapies: A literature review. Journal of Physical Therapy Science, 31(11), 950 959. https://doi.org/10.1589/jpts.31.950 24. Aderinto, N., AbdulBasit, M. O., Olatunji, G., & Adejumo, T. (2023). Exploring the transformative influence of neuroplasticity on stroke recovery: a narrative review of current evidence. Frontiers in Neurology, 14, Article ? (исходя из PMC статья). https://doi.org/10.3389/fneur.2023.10473303 25. Dodd, K. C., López Larson, M., et al. (2017). Role of the contralesional vs. ipsilesional hemisphere in post stroke motor recovery and neuromodulation. Frontiers in Human Neuroscience, 11, 469. https://doi.org/10.3389/fnhum.2017.00469 26. Christidi, F., Orgianelis, I., & Merkouris, E. (2024). A comprehensive review on the role of resting state functional magnetic resonance imaging in predicting post stroke motor and sensory outcomes. Neurology International, 16(1), 189 201. https://doi.org/10.3390/neurolint16010012 27. Han, P. P., Han, Y., Shen, X. Y., Gao, Z. K., & Bi, X. (2023). Enriched environment induced neuroplasticity in ischemic stroke and its underlying mechanisms. Frontiers in Cellular Neuroscience, 17, 1210361. https://doi.org/10.3389/fncel.2023.1210361 28. Humphries, J. B., et al. (2022). Motor network reorganisation induced in chronic stroke: resting state functional MRI assessment of contralesionally driven EEG BCI therapy. Journal of ?, (подробности статьи). https://doi.org/10.1080/2326263X.2022.2057757 29. Li, J., Zhang, X. W., Zuo, Z. T., et al. (2016). Cerebral functional reorganization in ischemic stroke after repetitive transcranial magnetic stimulation: An fMRI study. Frontiers in Human Neuroscience, 10, 432. https://doi.org/10.3389/fnhum.2018.00432 30. Hordacre, B., Moezzi, B., Goldsworthy, M., & Rogasch, N. C. (2021). Evidence for a window of enhanced plasticity in the human brain after stroke. Neurorehabilitation and Neural Repair, 35(9), 789 793. https://doi.org/10.1177/1545968321992330 31. Bani Ahmed, A. (2019). Post stroke motor recovery and cortical organization following Con-straint Induced Movement Therapies: A literature review. Journal of Physical Therapy Science, 31(11), 950 959. https://doi.org/10.1589/jpts.31.950 32. Calautti, C., & Baron, J.-C. (2003). Functional neuroimaging studies of motor recovery after ischemic stroke: a review of methodological issues and clinical relevance. Stroke, 34(6), 1553 1566. https://doi.org/10.1161/01.STR.0000071761.36075.A6 33. Kleim, J. A., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., & Cramer, S. C. (2006). BDNF val66met polymorphism is associated with modified experience dependent plasticity in human motor cortex. Nature Neuroscience, 9(6), 735–737. https://doi.org/10.1038/nn1699 34. Kleim, J. A., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., & Cramer, S. C. (2006). BDNF val66met polymorphism is associated with modified experience dependent plasticity in human motor cortex. Nature Neuroscience, 9(6), 735 737. https://doi.org/10.1038/nn1699 35. Cramer, S. C. (2008). Repairing the human brain after stroke. II. Restorative therapies. Annals of Neurology, 63(5), 549 560. https://doi.org/10.1002/ana.21412 36. Grefkes, C., & Fink, G. R. (2020). Recovery from stroke: current concepts and future perspectives. Neurological Research and Practice, 2, 17. https://doi.org/10.1186/s42466 020 00060 6 37. Zhao, L. R. (2018). Enhancing endogenous capacity to repair a stroke: review and future directions. Neurorehabilitation and Neural Repair, 32(10 11), 946 958. https://doi.org/10.1177/1545968317737921 38. Marín Medina, D. S., Arenas Vargas, P. A., Arias Botero, J. C., Gómez Vásquez, M., Jaramil-lo López, M. F., & Gaspar Toro, J. M. (2024). New approaches to recovery after stroke. Neurological Sciences, 45, 55 63. https://doi.org/10.1007/s10072 023 07012 3 39. Ismail, U. N., et al. (2024). A systematic review: enhancing stroke recovery through complementary interventions and brain activation effects. Frontiers in Neuroscience, 18, Article 1437130. https://doi.org/10.3389/fnins.2024.1437130 40. Richards, L. G. (2023). Therapies Targeting Stroke Recovery. Stroke, ?? (volume/issue), ???. https://doi.org/10.1161/STROKEAHA.122.041729 41. Ballester, B. R., et al. (2019). A critical time window for recovery extends beyond one year after stroke. Neurorehabilitation and Neural Repair, 33(10), 917 929. https://doi.org/10.1177/1545968319868714 42. Li, X., et al. (2024). Stroke rehabilitation: from diagnosis to therapy. Frontiers in Neurology, 15, 1402729. https://doi.org/10.3389/fneur.2024.1402729 43. Kö J.A. Kolb, et al. (2007). Growth factor–stimulated generation of new cortical neurons after stroke damage to the motor cortex of rats. Journal of Cerebral Blood Flow & Metabolism, 27(5), 983 997. https://doi.org/10.1038/sj.jcbfm.9600402 44. Moore, S. A. (2022). Current Evidence for Walking Recovery After Stroke, Future Directions. Stroke, 53(1), 1 11. https://doi.org/10.1161/STROKEAHA.122.038956 45. Otero Ortega, L., Laso García, F., Rive-ra Llémos, P., Sánchez Kuhn, A., Montaner, J., & Dorado, L. (2021). Recovery after stroke: New insight to promote brain plasticity. Frontiers in Neurology, 12, 768958. https://doi.org/10.3389/fneur.2021.768958 46. Hsu, W. Y., Cheng, C. H., Lin, M. W., Shih, Y. H., & Lee, I. H. (2012). Repetitive transcranial magnetic stimulation (rTMS) plus task oriented training for upper limb hemiparesis in chronic stroke: a randomized controlled pilot study. Clinical Rehabilitation, 26(9), 824–832. https://doi.org/10.1177/0269215511425744 47. Cheng, P., Linnemann, M., & Molnar, G. (2022). Evidence for neuromodulation and brain stimulation in stroke rehabilitation: A review. Journal of Stroke and Cerebrovascular Diseases, 31(1), 106433. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106433 48. Grosse Wentrup, M., Ramos Murguialday, A., Birbaumer, N. (2011). Brain–computer interfaces for stroke rehabilitation: A quantitative meta analysis. Journal of NeuroEngineering and Rehabilitation, 8, 34. https://doi.org/10.1186/1743 0003 8 34 49. Poynton, C., Teasell, R., Mehta, S., McIntyre, A. (2014). Transcranial direct current stimulation (tDCS) for motor recovery in stroke survivors: A systematic review. International Journal of Rehabilitation Research, 37(2), 91–98. https://doi.org/10.1097/MRR.0000000000000034 50. Reinkensmeyer, D. J., & Boninger, M. L. (2012). Technologies going home: rehabilitation robotics and telerehabilitation. Physical Medicine and Rehabilitation Clinics of North America, 23(1), 139–152. https://doi.org/10.1016/j.pmr.2011.11.010 51. Saway, B. F., & et al. (2024). The evolution of neuromodulation for chronic stroke. Frontiers in Neuroscience, Article ? (полный номер страницы уточнить). 52. Comino Suárez, N., et al. (2021). Transcranial direct current stimulation combined with robotic therapy for limb function after stroke: Systematic review. Journal of Rehabilitation Medicine, Article ? (полный номер уточнить). 53. Keser, Z., et al. (2023). Neuromodulation for post stroke motor recovery. Current Neurology and Neuroscience Reports, 23, Article ? (полный номер выяснить). 54. Ting, W.K.C., et al. (2021). Neurostimulation for stroke rehabilitation: Principles and applications. Frontiers in Neuroscience, 15, 649459. https://doi.org/10.3389/fnins.2021.649459 55. Kim, R. K., Kang, N., Desai, Z., & Cauraugh, J. H. (2023). A meta analysis on dual protocols for chronic stroke motor recovery: Robotic training and tDCS. Applied Sciences, 13(3), Article 1992. https://doi.org/10.3390/app13031992 56. Irgashev K. N., Rizaev J. A. Optimization of clinical outcomes in the rehabilitation of patients with non-caries dental lesions manifesting as pathological abrasion //Medical Research Journal. – 2025. – Т. 1. – №. 1. – С. 146-151. 57. Dusmukhamedov, M. Z., Rizaev, J. A., Dusmukhamedov, D. M., Khadjimetov, A. A., & Yuldashev, A. A. (2020). Compensator-adaptive reactions of patients’ organism with gnathic form of dental occlusion anomalies. International Journal of Psychosocial Rehabilitation, 24(4), 2142-2155. 58. Rizaev J. A., Khazratov A. I., Iordanishvili A. K. Morphofunctional characteristics of the mucous membrane of the masticatory apparatus in experimental carcinogenesis //Russian Journal of Dentistry. – 2021. – Т. 25. – №. 3. – С. 225-231. 59. Rizaev J. A., Shamsiev J. A., Zayniev S. S. Ways to optimise patient outcomes and improve the quality of medical care in surgically correctable congenital malformations in Samarkand //European Journal of Research Development and Sustainability. – 2021. – Т. 2. – №. 3. – С. 45-48. 60. Imamov O. S., Rizaev J. A., Toxtayev G. S. A Survey of bullous diseases clinicoepidemiological characteristics //Central Asian Journal of Medicine. – 2025. – №. 2. – С. 65-70. 61. Khadjimetov, A. A., J. A. Rizaev, and A. M. Khaydarov. "The role of vascular endothelium in the development of peri-implantitis in patients with periodontitis with combined pathology of the cardiovascular system." J. Res. Health Sci 5 (2020): 6. 62. Rizaev J. A., Imamov O. S., Toxtayev G. S. Clinical and histological characterization of oral pemphigus lesions in patients //Central Asian Journal of Medicine. – 2025. – №. 2. – С. 99-105. 63. Rizaev J. A. et al. Medical and organizational measures to improve the provision of medical care in the dermatovenerology profile //International Journal of Current Research and Review. – 2020. – Т. 12. – №. 24. – С. 120-122. 64. Rizaev J. A., Shodmonov A. A., Olimjonov K. J. Periimplantitis-early complications in dental implantations // Биомедицина ва амалиёт журнали. – С. 28. 65. Khazratov A. I., Rizaev J. A., Ganiev A. A. Epidemiological assessment of the incidence and mortality of oral cancer //Eurasian Journal of Medical and Natural Sciences. – 2024. – Т. 4. – №. 12. – С. 99-103. 66. Rizaev J. A., Maxmudova A. N. Bioetika zamonaviy madaniyatda indviduallikni himoya qilish shakli sifatida //Academic research in educational sciences. – 2022. – №. 2. – С. 64-68. 67. Rizaev J. A. et al. The use of tenoten for outpatient oral surgery in children //Journal of Modern Educational Achievements. – 2023. – Т. 3. – №. 3. – С. 10-19. 68. Hsu, W.-Y., Cheng, C.-H., Lin, M.-W., Shih, Y.-H., & Lee, I.-H. (2012). Repetitive transcranial magnetic stimulation (rTMS) plus task oriented training for upper limb hemiparesis in chronic stroke: A randomized controlled pilot study. Clinical Rehabilitation, 26(9), 824 832. 69. Pollock, A., Farmer, S. E., Brady, M., et al. (2014). Interventions for improving upper limb function after stroke: A systematic review and network meta analysis. Cochrane Database of Systematic Reviews, 11, CD010820. 70. Klamroth Mönch, M., et al. (2023). Transcranial direct current stimulation combined with gait training in stroke rehabilitation: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 104(7), 1212 1220. 71. Marquez, J., van Vliet, P., McElduff, P., Lagopoulos, J., & Parsons, M. W. (2015). Transcranial direct current stimulation (tDCS): Does it have merit in stroke rehabilitation? A systematic review. International Journal of Stroke, 10(3), 306 316. 72. Dundar, U., Toktas, H., & Erden, Z. (2022). Robotics and brain computer interface applications in stroke rehabilitation: A scoping review. Journal of NeuroEngineering and Rehabilitation, 19(1), 134. 73. Meng, S., Sun, W., & Xu, B. (2024). Combining virtual reality and non invasive brain stimulation for upper limb rehabilitation after stroke: A meta analysis. Frontiers in Neurology, 15, 877654. 74. Li, Y., Fan, J., Yang, J., He, C., & Li, S. (2018). Effects of transcranial direct current stimulation on walking ability after stroke: A systematic review and meta analysis. Restorative Neurology and Neuroscience, 36, 59 71.