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Резюме. Юриш таҳлили касалликларга ташхис қўйиш, шахсни текшириш ва реабилитацияни баҳолаш учун 

зарур. Бироқ, юришни таҳлил қилишда чуқур ўрганиш ёндашувларининг самарадорлиги қиммат, кўп меҳнат талаб 

қиладиган ва қатъий махфийлик қоидаларига бўйсунадиган юриш вақт қаторларининг кенг кўламли юқори си-
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фатли маълумотларини тўплашнинг мураккаблиги билан чекланади. HOA маълумотлар тўпламидаги экспери-

ментал натижалар шуни кўрсатадики, Z-TransCGAN бу TTS-CGANдан устун бўлиб, ўртача таснифлаш 

аниқлигини (АCC) 1,42% га ва эгри чизиқ остидаги майдонни (AUC) 0,85% га оширишга эришади. Ушбу натижа-

лар Z-TransCGAN нинг юриш таҳлили учун маълумотларни тўлдириш стратегияси сифатида самарадорлигини 

тасдиқлайди, бу эса синтетик маълумотлар ишлаб чиқаришни ҳам, пастки оқим бўйича таснифлаш самарадор-

лигини ҳам яхшилайди. 

Калит сўзлар: Чуқур ўрганиш; Шартли генератив рақобатли тармоқлар (CGAN); Юриш таҳлили; 

Маълумотларни тўлдириш; Трансформер. 

 

Abstract. Gait analysis is essential for disease diagnosis, identity verification, and rehabilitation assessment. How-

ever, the effectiveness of deep learning approaches in gait analysis is hindered by the difficulty of collecting large-scale, 

high-quality gait time-series data, which is costly, labor-intensive, and subject to strict privacy regulations. Experimental 

findings on the HOA dataset indicate that Z-TransCGAN surpasses TTS-CGAN, achieving a 1.42% increase in average 

classification accuracy (ACC) and a 0.85% increase in the area under the curve (AUC). These results validate the efficacy 

of Z-TransCGAN as a data augmentation strategy for gait analysis, improving both synthetic data generation and down-

stream classification performance. 

Keywords: Deep learning; Conditional Generative Adversarial Networks (CGANs); Gait analysis; Data augmenta-

tion; Transformer. 

 

I. Introduction. Deep learning has been 

increasingly employed in gait analysis tasks, including 

disease diagnosis, identity verification, and rehabilitation 

assessment. However, the effectiveness of these models 

largely depends on access to large-scale, high-quality train-

ing datasets [1]. Unlike image or text data, which are readi-

ly available online, gait time-series data must be acquired 

through specialized sensors, rendering the data collection 

process expensive, labor-intensive, and constrained by 

strict privacy regulations [2, 3]. These issues often result in 

limited sample sizes and significant class imbalance across 

different gait categories. As a result, models trained on 

such datasets are prone to overfitting and typically exhibit 

poor generalization to unseen subjects or underrepresented 

classes. 

To address data scarcity, researchers have tradition-

ally relied on handcrafted augmentation techniques, time 

domain based methods, e.g. window slicing, temporal 

shifting, and time scaling [4, 5], simulate walking varia-

tions by modifying segment durations or shifting time in-

dices. In the frequency domain, transformations like Fouri-

er and wavelet decomposition [6] manipulate spectral fea-

tures to introduce rhythm variability. Noise injection [7], 

often implemented via Gaussian or random noise, is also 

commonly used to improve model robustness. While these 

approaches are simple and computationally efficient, they 

typically suffer from limited generative diversity and may 

disrupt the complex spatiotemporal dependencies intrinsic 

to gait sequences. Moreover, these methods often rely on 

strong prior assumptions and lack adaptability to the 

nonlinear and dynamic nature of real-world gait signals, 

which can negatively impact downstream classification 

performance. 

Due to the advantages of Generative Adversarial 

Networks (GANs) developed in 20148, deep generative 

models have gained widespread popularity for data aug-

mentation and obtained a seris of exciting findings in dif-

ferent areas [9-11]. By learning to generate realistic 

samples from limited datasets, GANs offer a promising 

alternative to manual augmentation by expanding datasets 

in a data-driven manner. 

More recently, GANs have been increasingly 

utilized in the area of time-series data analysis. A compre-

hensive survey 12highlights their advantages, including the 

ability to augment small datasets, generate novel samples, 

recover corrupted sequences, reduce noise, and even pro-

duce privacy-preserving synthetic datasets. Time-series 

GAN models like C-RNN-GAN [13], RCGAN [14], 

TimeGAN [15], and SigCWGAN [16] typically adopt re-

current neural network (RNN) architectures due to their 

temporal modeling capabilities. However, RNN-based 

GANs often struggle with long-range dependencies and 

suffer from vanishing gradients, limiting their effectiveness 

in generating longer or more complex sequences. 

To overcome these difficulties, Transformer-based 

architectures [17], which leverage self-attention mecha-

nisms to model long-range dependencies, have been intro-

duced into generative tasks. Transformer modules have 

improved performance in various GAN frameworks for 

both vision and text domains [18, 19], and their theoretical 

advantages, particularly their ability to model long se-

quences without recurrent operations, make them attractive 

for time-series generation. 

The challenge in generating gait data lies in 

maintaining the spatiotemporal dynamics, such as the 

coordination of joint movements throughout the gait cycle, 

which requires precise conditional control during the 

generation process. Conditional GANs (CGANs), first in-

troduced by Mirza et al. [20], extend GANs by integrating 

class labels or other auxiliary variables into both the gener-

ator and discriminator, enabling class-specific synthetic 

data generation. For instance, TTS-CGAN effectively gen-

erates multi-class biological signals by adding a classifica-

tion head to the discriminator and using labels as condi-

tioning input [20]. This method can effectively preserves 

the discriminative features related to gait and its associa-

tion with disease by validating the classification ability of 

the synthetic data. However, as noted in the original 

literature, TTS-CGAN has primarily been applied to 

relatively stationary, low-dimensional, and short-duration 

sequences, where the generation process is comparatively 

easier and less noisy. 

In contrast, gait signals are typically non-stationary, 

high-dimensional, and long-duration, which significantly 

increases generation difficulty. Specifically, these signals 

are often contaminated with heterogeneous noise, where 

the magnitude and distribution of noise vary across 

dimensions. This leads to a key limitation in multivariate 

gait data generation: the imbalance of feature scales across 

dimensions exacerbates the model's tendency to overfit 
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noisy, high-variance features while neglecting meaningful 

low-variance ones. During training, dimensions with larger 

amplitudes disproportionately dominate the optimization 

process, distorting the generator's focus and causing the 

synthesized sequences to exhibit uneven temporal 

fluctuations. Ultimately, this degrades both the realism and 

the class separability of the generated data, making it diffi-

cult to produce high-fidelity, label-consistent synthetic gait 

signals. To address this limitation, Z-TransCGAN is intro-

duced—a Z-score Normalized Transformer-based Condi-

tional GAN tailored for generating multivariate, label-

specific gait time-series data. Prior to training, Z-score 

normalization is employed on the input data, transforming 

each feature to possess a mean of zero and a standard 

deviation equal to one. This preprocessing step effectively 

eliminates discrepancies in feature scales, mitigates the 

impact of heterogeneous noise, and ensures uniform 

contribution from each feature during the generation 

process. Consequently, the model achieves enhanced 

signal stationarity, leading to improved generation quality. 

The core conditioning strategy involves 

concatenating label embeddings with the generator input 

and incorporating a classification module into the 

discriminator. This structure enables the generation of 

class-specific synthetic sequences while allowing the 

discriminator to simultaneously distinguish between real 

and synthetic sequences and classify their categories. To 

validate the preservation of disease-relevant gait 

characteristics, the utility of the generated data is assessed 

through downstream classification performance. 

The principal contributions of this study can be 

summarized as follows: 

Z-TransCGAN is proposed as a Transformer-based 

conditional GAN tailored for generating multi-class 

labeled gait time-series data. 

Z-score normalization is applied to pre-process 

training data, mitigating inter-dimensional noise 

interference and enhancing the quality of generated non-

stationary signals. 

Classification experiments are conducted on the 

publicly available HOA dataset, combining real and 

synthetic data to demonstrate the effectiveness of the 

augmentation-based pipeline in improving classification 

accuracy. 

The structure of this paper is organized as follows: 

Section II offers a detailed description of the proposed 

method. Section III presents comprehensive experiments to 

evaluate the method's performance. Finally, Section IV 

concludes the study and discusses potential directions for 

future research. 

II. Proposed method.  

A. Motivations. In real-world gait analysis 

scenarios, collecting sufficient high-quality gait data 

through wearable sensors is often unrealistic due to various 

practical limitations. Specifically, (1) gait signals are 

influenced by factors such as sensor placement, individual 

variability, and environmental disturbances, which result in 

inconsistent signal quality; (2) Gait time-series data require 

specialized sensors for collection, which incurs high costs, 

significant labor, and is subject to stringent privacy 

regulations. As a result, the limited availability of data 

significantly hampers the performance and generalization 

ability of diagnostic models. 

Due to their powerful generative capabilities, GAN-

based approaches have been extensively employed to 

alleviate the issue of limited gait data. However, existing 

GAN-based approaches, including TTS-CGAN, rarely 

address the intrinsic challenge of heterogeneous noise 

interference across multivariate gait signals. Without 

proper normalization, the diverse scales and variances 

among different dimensions lead to an imbalanced training 

process, where the generator tends to overfit high-variance 

dimensions while neglecting subtle but critical temporal 

dependencies. This imbalance not only amplifies noise 

artifacts but also disrupts the continuity and realism of 

generated sequences, resulting in suboptimal data 

augmentation quality. 

To tackle the above issues, a Z-score Normalized 

TTS-CGAN framework, termed Z-TransCGAN, is 

proposed. Specifically, z-score normalization is applied 

prior to training to standardize all input features, ensuring a 

mean of zero and a variance of one, thereby mitigating the 

impact of heterogeneous noise and eliminating the 

influence of scale disparities between dimensions. By 

ensuring that all features contribute equally during 

training, Z-TransCGAN enhances the model’s capacity to 

capture the underlying spatiotemporal patterns and 

promotes a smoother generation process, leading to more 

coherent, realistic, and stable synthetic gait signals that 

better reflect true gait dynamics. The effectiveness of this 

approach is validated through classification experiments 

combining real and synthetic data, demonstrating 

significant improvements in downstream task performance 

with the augmented dataset. 

B. Proposed Z-TransCGAN-based gait 

classification Method 

1) Overall Framework: The proposed framework 

comprises four main stages, as shown in Figure 1. (1) 

Preprocessing of Gait Time-Series Data: The original 

multivariate gait time-series data are initially standardized 

using z-score normalization to eliminate scale differences 

across features. After normalization, the data are 

transformed into a C×H×W image-like format, where C 

denotes the number of channels and H is set to 1. 

Additionally, positional encodings and class label 

embeddings are incorporated into the data to facilitate 

downstream modeling. (2) Design and Training of Z-

TransCGAN: The Z-TransCGAN is constructed to 

synthesize multi-class gait data. The model includes a 

generator and a discriminator [22]. The generator is used to 

produce data corresponding to specific class labels, while 

the discriminator aims to distinguish between real and 

synthetic samples and classify the input into the correct 

category. Through adversarial training, both components 

are iteratively optimized to enhance the realism and 

diversity of the generated sequences. (3) Data Assessment 

and Selection: A similarity-based evaluation mechanism is 

employed to monitor the quality of the generated 

sequences. Based on this assessment, the model checkpoint 

that produces the highest-quality synthetic samples is 

selected for subsequent augmentation experiments. (4) 

Data Augmentation and Classification: High-quality 

synthetic samples are integrated with the original training 

data to form an augmented dataset. This enriched dataset is 

then utilized to train the classification model, aiming to 

enhance its performance on the testing set by improving 

generalization. 
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Figure 1: Gait classification algorithm based on Z-TransCGAN enhancement 

 

 
Figure 2: Comparison of data before and after standardization 

 

 
Figure 3: Overall architecture of Z-TransCGAN model based on Transformer 

 

2) Preprocessing of Gait Time-Series Data: In our 

experiments, the original multivariate gait time-series data, 

initially with dimensions of (BatchSize, C, W), first under-

goes z-score normalization to eliminate feature scale dis-

crepancies and enhance training stability. As shown in 

Figure 2, the fundamental concept of z-score normalization 

is to standardize the original data by utilizing its mean and 

standard deviation, thereby producing a dataset with a 

mean of zero and a standard deviation of one. Specifically, 

for a given dataset, the mean (


) and standard deviation 

( ) are calculated as: 
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This normalization process not only removes scale 

differences across features but also improves the stability 

and convergence efficiency of algorithms. 

After normalization, the data is treated as an image 

with a height of 1 and reshaped into the format C × H × W, 

where C denotes the number of signal channels (analogous 

to image color channels like RGB), H is the fixed height (1 

for time-series data), and W corresponds to the sequence 

length (the number of time steps). Thus, each input se-

quence is represented as a tensor of shape (BatchSize, C, 1, 

W). 

To facilitate model training, the sequence is divided 

into W/N segments based on a selected patch size N. A 

learnable positional encoding is then appended to the end 

of each patch to preserve temporal order information. As a 

result, the input to the discriminator adopts the shape 

(BatchSize, C, 1, (W/N) + 1).  

3) Design and Training of Z-TransCGAN: The Z-

TransCGAN network proposed in this study adopts Trans-

former encoder architectures for both the generator and the 

discriminator [21]. Each Transformer encoder is composed 

of two main components: a multi-head self-attention 

mechanism and a feedforward multilayer perceptron 

(MLP) with GELU activation. Layer normalization is ap-

plied prior to each component, while dropout layers are 

inserted after each component to mitigate overfitting. Re-

sidual connections are incorporated between components 

to preserve information flow across the network. 

As shown in Figure 3(a), the generator G is de-

signed to synthesize signals based on both a random latent 

vector z and a target class label c. The label c is randomly 

assigned, enabling the generator to learn to produce signals 

corresponding to different categories. Specifically, the 

generator takes a one-dimensional vector of length N, con-

sisting of uniformly distributed random values in the range 

(0, 1). The embedded label vector is then concatenated to 

the end of this input vector. For instance, if the generator 

receives a 1D vector of shape (100, 1) and a label embed-

ding of shape (10, 1), the final input becomes a (110, 1) 

vector. This combined input is subsequently transformed 

into a sequence with the same length and embedding di-

mension as the real signal. 

The sequence is subsequently segmented into mul-

tiple patches, with learnable positional encodings are add-

ed to each patch to prepare the data for input into the 

Transformer encoder blocks. To ensure that the output syn-

thetic sequence matches the shape of the real signal, a 

Conv2D layer with a kernel size of (1, 1) is applied after 

the Transformer encoder. This convolutional layer pre-

serves the width and height of the sequence while adjusting 

the number of channels. Specifically, the generator output 

with shape (BatchSize, Hidden_Dim, 1, Time_Length) is 

mapped to (BatchSize, Real_Dim, 1, Time_Length), where 

Real_Dim corresponds to the number of channels in the 

real data. Through this process, a multivariate time-series 

signal with the same shape as the real data is generated 

from the random noise vector. 

As shown in Figure 3(b), the discriminator is re-

sponsible for determining whether an input signal is real or 

synthetic, as well as classifying the signal into its respec-

tive category. The architecture of the discriminator is in-

spired by the Vision Transformer (ViT) model [23]. In 

ViT, an image is evenly divided into patches of equal 

width and height, each of which is flattened into a vector 

and projected into an embedding space through a linear 

layer, resulting in an embedding vector. Since Transform-

ers inherently lack a sense of positional order, learnable 

positional encodings are added to preserve the spatial rela-

tionships between patches. 

As described in the 'Preprocessing of Gait Time-

Series Data' section, each input time-series is treated as an 

image with a fixed height of 1, where the temporal steps 

align with the image’s width, and the signal channels cor-

respond to color channels. To enable the use of positional 

encodings, the width dimension is evenly partitioned into 

patches while keeping the height unchanged. The resulting 

embedded vectors are then passed through a standard 

Transformer encoder, comprising multi-head self-attention 

and feedforward layers, to generate high-dimensional fea-

ture representations that capture long-range dependencies 

within the pseudo-image sequence. Finally, a fully con-

nected layer performs classification based on these feature 

representations. 

4) Loss Function Design: The objective functions 

for optimizing the generator G and the discriminator D are 

defined as follows: 
r

D adv clsL L L    (4) 

f

G adv clsL L L    (5) 

Here, advL
 denotes the adversarial loss, which 

evaluates the discriminator’s ability to distinguish real sig-

nals from synthetic ones. 

r

clsL
 and 

f

clsL
 refer to the classi-

fication losses for real and synthetic data, respectively, 

assessing the discriminator's ability to correctly assign in-

put signals to their respective class labels. The 

hyperparameter   controls the relative importance be-

tween the classification and adversarial losses. 

To encourage the generator to produce synthetic 

signals that are indistinguishable from real ones, the fol-

lowing adversarial loss is adopted: 

,[log ( )] [log(1 ( ( , )))]adv x adv z c advL E D x E D G z c  

 (6) 

Here, 
( , )G z c

 denotes the synthetic signal pro-

duced by the generator, conditioned on the random noise 

vector z  and the target class label c , while advD
 aims to 

distinguish real signals from those generated by G. During 

GAN training, the generator seeks to minimize advL
, 

whereas the discriminator aims to maximize it. Hence, a 

negative sign is applied to advL
 in Equation (5), allowing 



 

Биология ва тиббиёт муаммолари     2025, №3 (161) 267 
 

the discriminator to maximize the adversarial objective 

while the generator minimizes it. 

Given a latent noise vector z  and a target class la-

bel c , the algorithm aims to generate a synthetic output 

signal that can be correctly classified into the specified 

class c . To this end, a classification head is integrated into 

the discriminator, and classification losses are included 

during the optimization of both the discriminator and the 

generator. The classification loss comprises two compo-

nents: 

Real classification loss is used to optimize D and is 

defined as: 

'

'

,
[ log ( | )]r

cls clsx c
L E D c x   (7) 

Here, 
r

clsL
 denotes the classification loss for real 

signals, where x is a real input signal, and c is its ground-

truth label. Minimizing this loss enables D to correctly 

classify real inputs into their respective original categories. 

Fake classification loss is used to optimize G and is 

defined as: 

, [ log ( | ( , ))]f

cls z c clsL E D c G z c   (8) 

Here, 
f

clsL  represents the classification loss for 

synthetic signals, where c represents  the target class label 

used during generation. Minimizing this loss encourages G 

to produce synthetic signals that can are accurately 

classified into the designated class.  

5) Design of Classification Model: This study utilizes 

the GLIR-GaitNet framework proposed in 24, which 

comprises two primary components: the GL-JCFE module 

and the PIR module. The GL-JCFE module comprises 

three submodules: the local 2D residual module, which 

captures local features within the three degrees of freedom 

of the same joint; the global dynamic graph learning 

module, which extracts global features across joints; and 

the MCE module, which enhances the complementarity 

between these two types of features. The PIR module 

addresses feature imbalance during multi-feature fusion by 

incorporating SIM loss, thereby improving the interaction 

between global and local features. Finally, classification 

results are derived by inputting the fused multi-feature 

representation into a fully connected layer for triple 

classification.  

C. Gait classification Based on the Z-TransCGAN 

In summary, the training procedure of the gait clas-

sification algorithm based on the conditional adversarial 

enhancement consists of four main stages: raw data pre-

processing, Z-TransCGAN model training, augmentation 

weight selection, and mixed-data classification. The de-

tailed training process is shown in Table 1. 

III. Experiments and results analysis 

A. Dataset 

The HOA gait dataset, provided by Dijon Universi-

ty Hospital (France), is publicly available for multi-

severity classification research. It can be accessed at 

https://waikato.github.io/weka-wiki/downloading_weka/, 

with trial registration on ClinicalTrials.gov 

(NCT01907503), dated 17 July 2013. This dataset includes 

gait data from 182 participants, consisting of both healthy 

individuals and those diagnosed with hip osteoarthritis 

(HOA). 

 

Table 1: Training process of gait classification algorithm based on Z-TransCGAN enhancement 

Input: Input data 
 

1,2,3,4
,i i i

x y


D
，total training epochs for the adversarial network GANE

，latent vector z，class 

labels c，hyperparameter ，and total training epochs for classification E . 

Normalize the input data, reshape it to a C×H×W format, and embed the corresponding class label and positional 

encodings. 

Initialize counter GANe
=0; 

While GAN GANe E
, do: 

Generate synthetic data synx
 conditioned on random latent vector z and class label c; 

Compute the discriminator loss DL
 using Equation (4)； 

Update the discriminator parameters； 

Compute the generator loss GL
 using Equation (5)； 

Update the generator parameters； 

1GAN GANe e 
； 

Initialize counter e=0； 

While e E , do： 

Augment the training dataset with generated data based on selected augmentation weights to form a mixed dataset 

1,2,3,4{ }, ,GAN

i ii ix x y  ； 

Update the parameters of the gait classification model； 

1e e  ； 
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Table 2: HOA Dataset description, including the category name and the size of samples 

Class Category Numbers 

0 Level 0 80 

1 Level 2 18 

2 Level 3 47 

3 Level 4 37 

 

 
Figure 4: Comparison of synthetic data on a single X-axis before and after standardization 

 

For consistency, ten gait samples were collected per 

participant. Data were recorded using eight optical cameras 

(100 Hz) and two force plates (1000 Hz) while subjects 

walked along a 6-meter track [25]. The raw motion data 

were segmented into gait cycles and resampled to 101 time 

points. Angular velocity signals from six bilateral joints—

ankles, knees, and hips—were used to create 18-

dimensional feature vectors for each frame, totaling 101 

frames per sample, as detailed in Table 2. Disease severity 

was categorized into four levels: 0 (asymptomatic), 2, 3, 

and 4, reflecting increasing symptom severity. 

B. Experimental Setup 

1) Implementation Details: The proposed frame-

work is implemented using the PyTorch library and trained 

on a system equipped with an NVIDIA RTX 3090 GPU. 

The model is trained for 150 epochs with a batch size of 8. 

Optimization is performed using the Stochastic Gradient 

Descent (SGD) algorithm, with a momentum of 0.9. The 

initial learning rate is set to 0.001 and is reduced to 0.0001 

after 70 epochs. 

2) Evaluation Metrics: To provide a comprehensive 

evaluation of the model's performance, two metrics are 

utilized: Accuracy (ACC) and Area Under the Curve 

(AUC). Accuracy is calculated as: 
4

1

4

i

TP TN

TP TN FP FN
Accuracy 



  



 (9) 

Here, TP, TN, FP, and FN denote the number of 

true positives, true negatives, false positives, and false 

negatives, respectively. 

The AUC, which calculates the area beneath the 

Receiver Operating Characteristic (ROC) curve, is used to 

investigate the capacity of distinguishing between classes. 

A higher value of AUC represents the better model per-

formance. 

3) Cross-validation: Given the limited size of the 

dataset, five-fold cross-validation is employed to ensure 

reliable evaluation. The dataset is divided into five strati-

fied folds, maintaining the class distribution within each 

fold. In each iteration, four folds are used for training and 

the remaining one for validation, with each fold serving as 

the validation set exactly once. Additionally, to account for 

the fact that each subject contributes multiple gait samples, 

Stratified Group K-Fold cross-validation is applied 26. 

This method ensures that data from a single subject are not 

simultaneously included in both the training and validation 

sets, effectively preventing data leakage and offering a 

more realistic evaluation of the model's generalization per-

formance in subject-independent scenarios. 

C. Evaluation of Generated Samples 

To assess the quality of synthetic time-series data 

produced by the adversarial model, this study employs four 

complementary methods: Raw data visualization, Principal 

Component Analysis (PCA), t-Distributed Stochastic 

Neighbor Embedding (t-SNE), and similarity score compu-

tation. 

4) Raw data visualization: Visualizing augmented 

time-series data provides an intuitive means to assess the 

fidelity of synthetic sequences generated through data 

augmentation. Theoretically, for synthetic data to be con-

sidered reliable, it should exhibit statistical consistency 

with real data across critical kinematic dimensions—such 

as amplitude fluctuations, base frequency cycles, and time-

frequency evolution characteristics. This ensures that the 

synthetic data maintains morphological similarity to real 

signals, thereby confirming its practical usability for gait 

analysis and offering a straightforward basis for evaluating 

the effectiveness of augmentation strategies. 

As depicted in Figure 4, synthetic data generated 

before and after standardization is compared with real data. 

The corresponding real data is shown as the red curve in 

Figure 2(b). Both pre- and post-standardization synthetic 

data closely align with real data in terms of amplitude, pe-

riodicity, and overall trend, confirming their visual similar-

ity. However, the pre-standardization synthetic data exhibit 

noticeable noise and irregularities, resulting in less smooth 

curves and greater susceptibility to heteroscedastic noise 

interference between multidimensional sequences. In con-

trast, the post-standardization synthetic data demonstrate 

improved smoothness and reduced noise, highlighting the 

importance of standardization in improving the quality and 

reliability of synthetic data for gait analysis applications. 
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Figure 5: The distribution of real and synthetic data after dimensionality reduction using PCA and t-SNE methods before 

and after standardization 

 

Table 3: Similarity score between real data and synthetic data before and after standardization 

Standardization 
Similarity Score 

Label=0 Label=1 Label=2 Label=3 

Without 0.979 0.762 0.867 0.902 

With 0.993 0.895 0.976 0.924 

 

Visualizations with PCA and t-SNE: To assess the 

distribution of synthetic data in the feature space and its 

similarity to real data, PCA and t-SNE are used for dimen-

sionality reduction. PCA identifies the principal compo-

nents accounting for the largest variance in the data and 

projects high-dimensional sequences into a lower-

dimensional space. Examining the PCA scatterplots allows 

assessment of whether the synthetic data extends the origi-

nal distribution and fills gaps between clusters. In contrast, 

t-SNE excels at visualizing local structures, helping us 

determine if the augmented data forms clusters similar to 

those of the real data or introduces new groupings. 

As shown in Figure 5, the distributions of synthetic 

and real data before and after standardization were com-

pared using PCA and t-SNE. The PCA plots reveal signifi-

cant overlap between both standardized and non-

standardized synthetic data and real data, indicating that 

the synthetic data captures the overall distribution and 

clustering structure. This overlap suggests statistical con-

sistency with the real data and effective simulation of its 

global structure. Moreover, separation beyond the overlap 

indicates that the synthetic data introduces additional vari-

ability, enhancing dataset diversity and reducing 

overfitting risk. In the t-SNE plots, standardized synthetic 

data exhibits closer alignment with real data, forming well-

defined clusters. This indicates that standardization im-

proves the local structural fidelity of the generated data, 

better capturing the intricate relationships in the real data.  

These observations confirm that standardization en-

hances both the global and local consistency of synthetic 

data, supporting its effectiveness as a high-quality augmen-

tation method for gait analysis. 

Similarity score computation: To quantitatively 

evaluate the similarity between synthetic and real gait se-

quences, the similarity score is defined using the average 

cosine similarity of feature vectors. For each sequence, 

seven statistical features—median, mean, standard devia-

tion, variance, root mean square, maximum, and minimum 

are extracted—resulting in a 7-dimensional feature vector: 

1 2, ,..., mf feature feature feature   (10) 

The cosine similarity between each pair of real and 

synthetic feature vectors is computed as follows: 

1

2 2

1 1

cos_

m

Ri GiR G i
ab

m m
R G

Ri Gii i

f ff f
sim

f f
f f



 


 



 
 (11) 

where Rf  and Gf denote the feature vectors of real 

and synthetic signals, respectively, each of length m . The 

average cosine similarity is then calculated across all pairs 

of feature vectors belonging to the same class, providing a 

measure of overall similarity: 

1

1
avg _ cos_ cos_

n

i

i

sim sim
n 

   (12) 

In our experiments, 30 synthetic samples per class 

were trained, and the cosine similarity scores were com-

puted before and after standardization. The results, pre-

sented in Table 3, indicate that for each hip osteoarthritis 

(HOA) severity level, the synthetic samples generated by 

the standardized model exhibit higher average cosine simi-

larity to real samples compared to those generated without 

standardization. 

In summary, these similarity analyses of augmented 

time-series data suggest that incorporating multi-

dimensional data standardization into the synthesis process 

enhances the fidelity of synthetic gait data, reducing noise 

and improving its alignment with real data.  

Analysis of Enhanced Classification Algorithm Re-

sults. The impact of data augmentation on classification 

performance was evaluated by training models using a 

combination of real and synthetic data from the HOA da-

taset. The dataset is categorized into four classes based on 

severity levels: 80 samples from the control group (class 

0), 18 samples with mild severity (class 1), 47 samples 

with moderate severity (class 2), and 37 samples with se-

vere symptoms (class 3). To address the underrepresenta-

tion of moderate severity samples (class 2), a higher aug-

mentation factor was applied specifically to this class. The 

experimental design involved constructing a new training 

set by merging the original samples with augmented data, 

and then comparing the results with models trained solely 

on the original dataset. 
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Table 4: The impact of different enhancement schemes on the accuracy of each fold 

Enhancement schemes 
Cross validation of ACC (%) for each fold 

Average ACC (%) Average AUC (%) 
Fold1 Fold 2 Fold 3 Fold 4 Fold 5 

No Augment 83.24 87.84 90.86 86.00 85.56 86.70 79.58 

0.5 times 85.95 87.71 86.39 85.23 89.97 87.05 79.53 

1 times 87.16 88.11 88.89 85.97 90.83 88.21 80.47 

1.5 times 86.78 88.10 89.02 82.37 88.34 86.922 79.45 

* On the basis of the original enhancement factor, the second type of data has been increased by an additional 0.5 times. 

 

Table 5: Performance of various enhancement methods on the HOA dataset 

Method 
Cross validation of ACC (%) for each fold 

Average ACC (%) Average AUC (%) 
Fold1 Fold 2 Fold 3 Fold 4 Fold 5 

No Augment 83.24 87.84 90.86 86.00 85.56 86.70 79.58 

MTS-CGAN 86.02 85.39 84.24 81.16 85.23 84.41 76.56 

TTS-CGAN 86.70 87.91 85.86 86.72 86.75 86.79 79.62 

Z-TransCGAN 87.16 88.11 88.89 85.97 90.83 88.21 80.47 

 

To align with the cross-validation training scheme, 

augmentation models were trained independently for each 

fold, generating synthetic samples based on the corre-

sponding training set. These augmented models were sub-

sequently evaluated on their respective test sets to rigor-

ously assess the effectiveness of the proposed data aug-

mentation strategy. Table 4 presents the classification ACC 

across five folds under different augmentation strategies, 

along with the average ACC and AUC scores. 

As presented in Table 4, augmenting the number of 

samples in classes 0, 1, and 3 by twofold and increasing 

class 2 by 1.5 times resulted in the highest average ACC of 

88.21% and AUC of 80.47%. Compared to the baseline 

model without augmentation, this represents improvements 

of 1.51% in ACC and 0.89% in AUC. These results indi-

cate that the proposed data augmentation approach effec-

tively alleviates the challenges of limited and imbalanced 

data, thereby enhancing the overall classification perfor-

mance. 

E. Comparative Experiment Results and Analysis 

To validate the effectiveness of the proposed gait 

data augmentation method, comparative experiments are 

conducted to assess the classification performance after 

generating augmented gait sequences using various time-

series augmentation methods. To ensure a fair comparison, 

the same raw training and testing samples, along with iden-

tical classification models, are used across all algorithms. 

The detailed classification performance comparison results 

are presented in Tables 5. 

1) No Augment: This baseline directly trains and 

tests the model on the original, non-augmented dataset, 

without applying any data augmentation techniques. 

2) MTS-CGAN: Multivariate Time Series Condi-

tional Generative Adversarial Network 27is a Transformer-

based generative model that adjusts the generator’s output 

using encoded contextual information. It enables a single 

model to learn the mixed distribution of data from multiple 

classes, allowing for realistic modeling of multivariate 

time series under various conditions. 

3) TTS-CGAN: The Transformer Time-Series Con-

ditional GAN 21, as introduced earlier, corresponds to the 

conditional adversarial augmentation network but omits 

the normalization preprocessing step. While this approach 

facilitates the generation of synthetic time-series data, it 

exhibits limitations in producing high-quality sequences 

for longer, non-stationary signals. 

The results of the comparative experiments indicate 

that the proposed improved method consistently outper-

forms other approaches. Specifically, when MTS-CGAN 

was used for data augmentation, the accuracy of cross-

validation decreased to varying extents in all folds. This 

indicates that the synthetic data produced by MTS-CGAN 

exhibited lower quality, and mixing this data with the orig-

inal training set hindered the model from learning effective 

classification weights, ultimately leading to performance 

degradation. In contrast, both the TTS-CGAN and the im-

proved Z-TransCGAN methods resulted in significant per-

formance improvements. Notably, the incorporation of the 

standardization process further enhanced the quality of the 

synthetic data. Compared to TTS-CGAN, this improve-

ment resulted in a 1.42% improvement in average ACC 

and a 0.85% gain in average AUC, effectively optimizing 

the general time-series augmentation algorithm for gait 

sequence synthesis. 

Figure 6 displays the confusion matrix and ROC 

curves for the enhanced gait classification algorithm based 

on Z-TransCGAN, illustrating disease grading results. In 

Figure 6(a), the confusion matrix is presented, showcasing 

the model's performance across four categories. Each cell 

represents the normalized probability of a specific combi-

nation of predicted and true labels, offering valuable in-

sights into the model's class-wise performance. Figure 6(b) 

illustrates the ROC curves, which demonstrate the trade-

off between the true positive rate and the false positive rate 

at various thresholds. The AUC quantifies the model’s 

discriminative ability, with values closer to 1 indicating 

better performance. The model performs best in class 0 

(AUC = 0.9686), effectively diagnosing whether a subject 

has HOA. However, the diagnostic performance for class 

1, representing mild patients, is relatively ambiguous 

(AUC = 0.6253), likely due to the less pronounced gait 

abnormalities in this group. 
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Figure 6: Confusion matrix and ROC curves for Z-TransCGAN-based gait classification 

 

IV. Conclusion. This study presents Z-

TransCGAN, a Transformer-based conditional GAN en-

hanced with Z-score normalization, specifically designed 

to generate high-quality multivariate gait time-series data 

for disease diagnosis and severity grading. By standardiz-

ing input features, Z-TransCGAN mitigates scale dispari-

ties and reduces heterogeneous noise interference, leading 

to improved model performance. Experimental validation 

on the HOA dataset demonstrates that Z-TransCGAN out-

performs TTS-CGAN, achieving a 1.42% increase in aver-

age ACC and a 0.85% increase in average AUC. These 

findings underscore the effectiveness of Z-TransCGAN as 

a data augmentation method, enhancing both synthetic data 

generation and downstream classification tasks in gait 

analysis.  

From a clinical perspective, the ability to generate 

synthetic gait data that accurately reflects disease-specific 

patterns is crucial for training robust diagnostic models, 

especially when real-world data is scarce. However, it is 

important to note that gait signals inherently contain indi-

vidual-specific information, such as personal walking 

styles, which can inadvertently be learned by generative 

models. This unintended memorization poses privacy con-

cerns and may affect the generalization ability of models 

trained on synthetic data. 

To tackle this issue, future research should priori-

tize the development of methods that can disentangle dis-

ease-related features from individual-specific attributes 

within gait data. Approaches such as adversarial training, 

differential privacy, or attribute editing frameworks could 

be explored to anonymize synthetic gait sequences while 

preserving their diagnostic utility. 
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Z-TRANSCGAN: УСЛОВНАЯ ГЕНЕРАТИВНО-

СОБИРАТЕЛЬНАЯ СЕТЬ НА ОСНОВЕ 

ПРЕОБРАЗОВАТЕЛЯ С НОРМАЛИЗАЦИЕЙ Z-

ОЦЕНКИ ДЛЯ ДОПОЛНЕНИЯ ДАННЫХ О 

ПОХОДКЕ 

 

Юаньюань Сун, Фэй Лю, Юэ Ян, Хуаронг Шао, 

Шодикулова Г.З., Бабамурадова З.Б., Бин Джи 

 

Резюме. Анализ походки необходим для диагно-

стики заболеваний, проверки личности и оценки реаби-

литации. Однако эффективность подходов глубокого 

обучения в анализе походки сдерживается сложно-

стью сбора крупномасштабных высококачественных 

данных временных рядов походки, что является доро-

гостоящим, трудоемким и подчиняется строгим пра-

вилам конфиденциальности. Экспериментальные ре-

зультаты на наборе данных HOA показывают, что Z-

TransCGAN превосходит TTS-CGAN, достигая 1,42% 

увеличения средней точности классификации (ACC) и 

0,85% увеличения площади под кривой (AUC). Эти ре-

зультаты подтверждают эффективность Z-

TransCGAN как стратегии дополнения данных для 

анализа походки, улучшая как генерацию синтетиче-

ских данных, так и производительность классифика-

ции ниже по потоку. 

Ключевые слова: Глубокое обучение; Условные 

генеративные состязательные сети (CGAN); Анализ 

походки; Дополнение данных; Трансформер. 
 


