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damau maviymomaapunu myniawiHune mypakkabnueu ounan yexnanaou. HOA mavnymomnap myniamudaeu skcnepu-
meuman uHamusicarap uiynu xypcamaouxu, Z-TransCGAN 6y TTS-CGANOar ycmyn 6yaub, ypmawa machugpaaut
anuxueunu (ACC) 1,42% 2a 6a vsepu uusux ocmuoazu maioonnu (AUC) 0,85% ea owupuwea spuwacu. Ywby namuica-
nap Z-TransCGAN wuwue ropuw maxaunu yuyH MaviyMOmMiapHy mynoupuul Cmpame2usicu cugpamuoa camapaoopiueutu
macouxnanou, 6y 2ca CUHMemuK MavilyMOmaIap uuiiad YuKapuiiny xam, nacmxu okum oyuuua macuupraw camapaoop-
JUSUHU XAM SAXUULALOU.

Kanum cyznap: Yyxyp ypeanuw;, [Hlapmau eenepamus paxobamau mapmokaap (CGAN); FOpuw maxnunu,
Mavrymomnapuu mynoupuws; Tpancgopmep.

Abstract. Gait analysis is essential for disease diagnosis, identity verification, and rehabilitation assessment. How-
ever, the effectiveness of deep learning approaches in gait analysis is hindered by the difficulty of collecting large-scale,
high-quality gait time-series data, which is costly, labor-intensive, and subject to strict privacy regulations. Experimental
findings on the HOA dataset indicate that Z-TransCGAN surpasses TTS-CGAN, achieving a 1.42% increase in average
classification accuracy (ACC) and a 0.85% increase in the area under the curve (AUC). These results validate the efficacy
of Z-TransCGAN as a data augmentation strategy for gait analysis, improving both synthetic data generation and down-

stream classification performance.

Keywords: Deep learning; Conditional Generative Adversarial Networks (CGANSs); Gait analysis; Data augmenta-

tion; Transformer.

I. Introduction. Deep learning has been
increasingly employed in gait analysis tasks, including
disease diagnosis, identity verification, and rehabilitation
assessment. However, the effectiveness of these models
largely depends on access to large-scale, high-quality train-
ing datasets [1]. Unlike image or text data, which are readi-
ly available online, gait time-series data must be acquired
through specialized sensors, rendering the data collection
process expensive, labor-intensive, and constrained by
strict privacy regulations [2, 3]. These issues often result in
limited sample sizes and significant class imbalance across
different gait categories. As a result, models trained on
such datasets are prone to overfitting and typically exhibit
poor generalization to unseen subjects or underrepresented
classes.

To address data scarcity, researchers have tradition-
ally relied on handcrafted augmentation techniques, time
domain based methods, e.g. window slicing, temporal
shifting, and time scaling [4, 5], simulate walking varia-
tions by modifying segment durations or shifting time in-
dices. In the frequency domain, transformations like Fouri-
er and wavelet decomposition [6] manipulate spectral fea-
tures to introduce rhythm variability. Noise injection [7],
often implemented via Gaussian or random noise, is also
commonly used to improve model robustness. While these
approaches are simple and computationally efficient, they
typically suffer from limited generative diversity and may
disrupt the complex spatiotemporal dependencies intrinsic
to gait sequences. Moreover, these methods often rely on
strong prior assumptions and lack adaptability to the
nonlinear and dynamic nature of real-world gait signals,
which can negatively impact downstream classification
performance.

Due to the advantages of Generative Adversarial
Networks (GANSs) developed in 20148, deep generative
models have gained widespread popularity for data aug-
mentation and obtained a seris of exciting findings in dif-
ferent areas [9-11]. By learning to generate realistic
samples from limited datasets, GANs offer a promising
alternative to manual augmentation by expanding datasets
in a data-driven manner.

More recently, GANs have been increasingly
utilized in the area of time-series data analysis. A compre-
hensive survey 12highlights their advantages, including the
ability to augment small datasets, generate novel samples,

recover corrupted sequences, reduce noise, and even pro-
duce privacy-preserving synthetic datasets. Time-series
GAN models like C-RNN-GAN [13], RCGAN [14],
TimeGAN [15], and SigCWGAN [16] typically adopt re-
current neural network (RNN) architectures due to their
temporal modeling capabilities. However, RNN-based
GANs often struggle with long-range dependencies and
suffer from vanishing gradients, limiting their effectiveness
in generating longer or more complex sequences.

To overcome these difficulties, Transformer-based
architectures [17], which leverage self-attention mecha-
nisms to model long-range dependencies, have been intro-
duced into generative tasks. Transformer modules have
improved performance in various GAN frameworks for
both vision and text domains [18, 19], and their theoretical
advantages, particularly their ability to model long se-
guences without recurrent operations, make them attractive
for time-series generation.

The challenge in generating gait data lies in
maintaining the spatiotemporal dynamics, such as the
coordination of joint movements throughout the gait cycle,
which requires precise conditional control during the
generation process. Conditional GANs (CGANS), first in-
troduced by Mirza et al. [20], extend GANSs by integrating
class labels or other auxiliary variables into both the gener-
ator and discriminator, enabling class-specific synthetic
data generation. For instance, TTS-CGAN effectively gen-
erates multi-class biological signals by adding a classifica-
tion head to the discriminator and using labels as condi-
tioning input [20]. This method can effectively preserves
the discriminative features related to gait and its associa-
tion with disease by validating the classification ability of
the synthetic data. However, as noted in the original
literature, TTS-CGAN has primarily been applied to
relatively stationary, low-dimensional, and short-duration
sequences, where the generation process is comparatively
easier and less noisy.

In contrast, gait signals are typically non-stationary,
high-dimensional, and long-duration, which significantly
increases generation difficulty. Specifically, these signals
are often contaminated with heterogeneous noise, where
the magnitude and distribution of noise vary across
dimensions. This leads to a key limitation in multivariate
gait data generation: the imbalance of feature scales across
dimensions exacerbates the model's tendency to overfit
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noisy, high-variance features while neglecting meaningful
low-variance ones. During training, dimensions with larger
amplitudes disproportionately dominate the optimization
process, distorting the generator's focus and causing the
synthesized sequences to exhibit uneven temporal
fluctuations. Ultimately, this degrades both the realism and
the class separability of the generated data, making it diffi-
cult to produce high-fidelity, label-consistent synthetic gait
signals. To address this limitation, Z-TransCGAN is intro-
duced—a Z-score Normalized Transformer-based Condi-
tional GAN tailored for generating multivariate, label-
specific gait time-series data. Prior to training, Z-score
normalization is employed on the input data, transforming
each feature to possess a mean of zero and a standard
deviation equal to one. This preprocessing step effectively
eliminates discrepancies in feature scales, mitigates the
impact of heterogeneous noise, and ensures uniform
contribution from each feature during the generation
process. Consequently, the model achieves enhanced
signal stationarity, leading to improved generation quality.

The core conditioning strategy  involves
concatenating label embeddings with the generator input
and incorporating a classification module into the
discriminator. This structure enables the generation of
class-specific synthetic sequences while allowing the
discriminator to simultaneously distinguish between real
and synthetic sequences and classify their categories. To
validate the preservation of disease-relevant gait
characteristics, the utility of the generated data is assessed
through downstream classification performance.

The principal contributions of this study can be
summarized as follows:

Z-TransCGAN is proposed as a Transformer-based
conditional GAN tailored for generating multi-class
labeled gait time-series data.

Z-score normalization is applied to pre-process
training data, mitigating inter-dimensional  noise
interference and enhancing the quality of generated non-
stationary signals.

Classification experiments are conducted on the
publicly available HOA dataset, combining real and
synthetic data to demonstrate the effectiveness of the
augmentation-based pipeline in improving classification
accuracy.

The structure of this paper is organized as follows:
Section Il offers a detailed description of the proposed
method. Section 111 presents comprehensive experiments to
evaluate the method's performance. Finally, Section 1V
concludes the study and discusses potential directions for
future research.

1. Proposed method.

A. Motivations. In real-world gait analysis
scenarios, collecting sufficient high-quality gait data
through wearable sensors is often unrealistic due to various
practical limitations. Specifically, (1) gait signals are
influenced by factors such as sensor placement, individual
variability, and environmental disturbances, which result in
inconsistent signal quality; (2) Gait time-series data require
specialized sensors for collection, which incurs high costs,
significant labor, and is subject to stringent privacy
regulations. As a result, the limited availability of data
significantly hampers the performance and generalization
ability of diagnostic models.

Due to their powerful generative capabilities, GAN-
based approaches have bheen extensively employed to
alleviate the issue of limited gait data. However, existing
GAN-based approaches, including TTS-CGAN, rarely
address the intrinsic challenge of heterogeneous noise
interference across multivariate gait signals. Without
proper normalization, the diverse scales and variances
among different dimensions lead to an imbalanced training
process, where the generator tends to overfit high-variance
dimensions while neglecting subtle but critical temporal
dependencies. This imbalance not only amplifies noise
artifacts but also disrupts the continuity and realism of
generated sequences, resulting in suboptimal data
augmentation quality.

To tackle the above issues, a Z-score Normalized
TTS-CGAN framework, termed Z-TransCGAN, is
proposed. Specifically, z-score normalization is applied
prior to training to standardize all input features, ensuring a
mean of zero and a variance of one, thereby mitigating the
impact of heterogeneous noise and eliminating the
influence of scale disparities between dimensions. By
ensuring that all features contribute equally during
training, Z-TransCGAN enhances the model’s capacity to
capture the underlying spatiotemporal patterns and
promotes a smoother generation process, leading to more
coherent, realistic, and stable synthetic gait signals that
better reflect true gait dynamics. The effectiveness of this
approach is validated through classification experiments
combining real and synthetic data, demonstrating
significant improvements in downstream task performance
with the augmented dataset.

B. Proposed
classification Method

1) Overall Framework: The proposed framework
comprises four main stages, as shown in Figure 1. (1)
Preprocessing of Gait Time-Series Data: The original
multivariate gait time-series data are initially standardized
using z-score normalization to eliminate scale differences
across features. After normalization, the data are
transformed into a CxHxW image-like format, where C
denotes the number of channels and H is set to 1.
Additionally, positional encodings and class label
embeddings are incorporated into the data to facilitate
downstream modeling. (2) Design and Training of Z-
TransCGAN: The Z-TransCGAN is constructed to
synthesize multi-class gait data. The model includes a
generator and a discriminator [22]. The generator is used to
produce data corresponding to specific class labels, while
the discriminator aims to distinguish between real and
synthetic samples and classify the input into the correct
category. Through adversarial training, both components
are iteratively optimized to enhance the realism and
diversity of the generated sequences. (3) Data Assessment
and Selection: A similarity-based evaluation mechanism is
employed to monitor the quality of the generated
sequences. Based on this assessment, the model checkpoint
that produces the highest-quality synthetic samples is
selected for subsequent augmentation experiments. (4)
Data Augmentation and Classification: High-quality
synthetic samples are integrated with the original training
data to form an augmented dataset. This enriched dataset is
then utilized to train the classification model, aiming to
enhance its performance on the testing set by improving
generalization.

Z-TransCGAN-based gait
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Figure 1: Gait classification algorithm based on Z-TransCGAN enhancement
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Figure 2: Comparison of data before and after standardization
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Figure 3: Overall architecture of Z—TrénsCGAN model based on Transformer

2) Preprocessing of Gait Time-Series Data: In our
experiments, the original multivariate gait time-series data,
initially with dimensions of (BatchSize, C, W), first under-
goes z-score normalization to eliminate feature scale dis-
crepancies and enhance training stability. As shown in
Figure 2, the fundamental concept of z-score normalization

is to standardize the original data by utilizing its mean and
standard deviation, thereby producing a dataset with a
mean of zero and a standard deviation of one. Specifically,
for a given dataset, the mean (,u ) and standard deviation
(9 ) are calculated as:
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Based on these, each data point Xi can be standardized us-
ing:

7z =XTH i_12..n
o (3)

This normalization process not only removes scale
differences across features but also improves the stability
and convergence efficiency of algorithms.

After normalization, the data is treated as an image
with a height of 1 and reshaped into the format C x H x W,
where C denotes the number of signal channels (analogous
to image color channels like RGB), H is the fixed height (1
for time-series data), and W corresponds to the sequence
length (the number of time steps). Thus, each input se-
quence is represented as a tensor of shape (BatchSize, C, 1,

W).

To facilitate model training, the sequence is divided
into W/N segments based on a selected patch size N. A
learnable positional encoding is then appended to the end
of each patch to preserve temporal order information. As a
result, the input to the discriminator adopts the shape
(BatchSize, C, 1, (W/N) + 1).

3) Design and Training of Z-TransCGAN: The Z-
TransCGAN network proposed in this study adopts Trans-
former encoder architectures for both the generator and the
discriminator [21]. Each Transformer encoder is composed
of two main components: a multi-head self-attention
mechanism and a feedforward multilayer perceptron
(MLP) with GELU activation. Layer normalization is ap-
plied prior to each component, while dropout layers are
inserted after each component to mitigate overfitting. Re-
sidual connections are incorporated between components
to preserve information flow across the network.

As shown in Figure 3(a), the generator G is de-
signed to synthesize signals based on both a random latent
vector z and a target class label c. The label ¢ is randomly
assigned, enabling the generator to learn to produce signals
corresponding to different categories. Specifically, the
generator takes a one-dimensional vector of length N, con-
sisting of uniformly distributed random values in the range
(0, 1). The embedded label vector is then concatenated to
the end of this input vector. For instance, if the generator
receives a 1D vector of shape (100, 1) and a label embed-
ding of shape (10, 1), the final input becomes a (110, 1)
vector. This combined input is subsequently transformed
into a sequence with the same length and embedding di-
mension as the real signal.

The sequence is subsequently segmented into mul-
tiple patches, with learnable positional encodings are add-
ed to each patch to prepare the data for input into the
Transformer encoder blocks. To ensure that the output syn-
thetic sequence matches the shape of the real signal, a
Conv2D layer with a kernel size of (1, 1) is applied after
the Transformer encoder. This convolutional layer pre-
serves the width and height of the sequence while adjusting
the number of channels. Specifically, the generator output

with shape (BatchSize, Hidden_Dim, 1, Time_Length) is
mapped to (BatchSize, Real_Dim, 1, Time_Length), where
Real_Dim corresponds to the number of channels in the
real data. Through this process, a multivariate time-series
signal with the same shape as the real data is generated
from the random noise vector.

As shown in Figure 3(b), the discriminator is re-
sponsible for determining whether an input signal is real or
synthetic, as well as classifying the signal into its respec-
tive category. The architecture of the discriminator is in-
spired by the Vision Transformer (ViT) model [23]. In
VIiT, an image is evenly divided into patches of equal
width and height, each of which is flattened into a vector
and projected into an embedding space through a linear
layer, resulting in an embedding vector. Since Transform-
ers inherently lack a sense of positional order, learnable
positional encodings are added to preserve the spatial rela-
tionships between patches.

As described in the 'Preprocessing of Gait Time-
Series Data' section, each input time-series is treated as an
image with a fixed height of 1, where the temporal steps
align with the image’s width, and the signal channels cor-
respond to color channels. To enable the use of positional
encodings, the width dimension is evenly partitioned into
patches while keeping the height unchanged. The resulting
embedded vectors are then passed through a standard
Transformer encoder, comprising multi-head self-attention
and feedforward layers, to generate high-dimensional fea-
ture representations that capture long-range dependencies
within the pseudo-image sequence. Finally, a fully con-
nected layer performs classification based on these feature
representations.

4) Loss Function Design: The objective functions
for optimizing the generator G and the discriminator D are
defined as follows:

L p=—Lu + A5 ()
f
L G:_Ladv +/1Lcls ®)
Here, Lad" denotes the adversarial loss, which

evaluates the discriminator’s ability to distinguish real sig-
r

f
nals from synthetic ones. /s and LC'S refer to the classi-
fication losses for real and synthetic data, respectively,
assessing the discriminator's ability to correctly assign in-
put signals to their respective class labels. The

hyperparameter A controls the relative importance be-
tween the classification and adversarial losses.

To encourage the generator to produce synthetic
signals that are indistinguishable from real ones, the fol-
lowing adversarial loss is adopted:

Lo, = Ei[l0g Dy, (X)]+ E, c[log(l— D, (G(z,0)))]
(6)

Here, G(z,c) denotes the synthetic signal pro-
duced by the generator, conditioned on the random noise

vector Z and the target class label C while Daay aims to
distinguish real signals from those generated by G. During

- T
GAN training, the generator seeks to minimize —ad
whereas the discriminator aims to maximize it. Hence, a

negative sign is applied to L in Equation (5), allowing
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the discriminator to maximize the adversarial objective
while the generator minimizes it.
Given a latent noise vector Z and a target class la-

bel € the algorithm aims to generate a synthetic output
signal that can be correctly classified into the specified
class C . To this end, a classification head is integrated into
the discriminator, and classification losses are included
during the optimization of both the discriminator and the
generator. The classification loss comprises two compo-
nents:
Real classification loss is used to optimize D and is
defined as:
L::Is = Ex,c' [_Iog Dcls (C | X)] (7)
r

Here, Lo denotes the classification loss for real
signals, where x is a real input signal, and c is its ground-
truth label. Minimizing this loss enables D to correctly
classify real inputs into their respective original categories.

Fake classification loss is used to optimize G and is
defined as:

f
Los = B, [-10g Dy (€] G(z,0))] ®
Here, L;s represents the classification loss for

synthetic signals, where ¢ represents the target class label
used during generation. Minimizing this loss encourages G
to produce synthetic signals that can are accurately
classified into the designated class.

5) Design of Classification Model: This study utilizes
the GLIR-GaitNet framework proposed in 24, which
comprises two primary components: the GL-JCFE module
and the PIR module. The GL-JCFE module comprises

three submodules: the local 2D residual module, which
captures local features within the three degrees of freedom
of the same joint; the global dynamic graph learning
module, which extracts global features across joints; and
the MCE module, which enhances the complementarity
between these two types of features. The PIR module
addresses feature imbalance during multi-feature fusion by
incorporating SIM loss, thereby improving the interaction
between global and local features. Finally, classification
results are derived by inputting the fused multi-feature
representation into a fully connected layer for triple
classification.

C. Gait classification Based on the Z-TransCGAN

In summary, the training procedure of the gait clas-
sification algorithm based on the conditional adversarial
enhancement consists of four main stages: raw data pre-
processing, Z-TransCGAN model training, augmentation
weight selection, and mixed-data classification. The de-
tailed training process is shown in Table 1.

111. Experiments and results analysis

A. Dataset

The HOA gait dataset, provided by Dijon Universi-
ty Hospital (France), is publicly available for multi-
severity classification research. It can be accessed at
https://waikato.github.io/weka-wiki/downloading_weka/,
with trial registration on ClinicalTrials.gov
(NCT01907503), dated 17 July 2013. This dataset includes
gait data from 182 participants, consisting of both healthy
individuals and those diagnosed with hip osteoarthritis
(HOA).

Table 1: Training process of gait classification algorithm based on Z-TransCGAN enhancement

D= X,V ¢,
Input: Input data { ' y'}'=11213v4

. . E
, total training epochs for the adversarial network AN , [atent vector z, class

labels ¢, hyperparameter A, and total training epochs for classification E.

Normalize the input data, reshape it to a CxHxXW format, and embed the corresponding class label and positional

encodings.

. €
Initialize counter ~GAN =(:

<
While €oun < Eoan , do:

Generate synthetic data

N L, . :
Compute the discriminator loss — P using Equation (4);
Update the discriminator parameters;

Compute the generator loss LG using Equation (5);
Update the generator parameters;

1

€oan = €ean T,
Initialize counter e=0;

While €< E do.

X L.
M conditioned on random latent vector z and class label c;

Augment the training dataset with generated data based on selected augmentation weights to form a mixed dataset

GAN
{Xi ! Xi ! yi}i:1,2,3,4 .

Update the parameters of the gait classification model;
e=e+1,
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Table 2: HOA Dataset description, including the category name and the size of samples

Class Category Numbers
0 Level 0 80
1 Level 2 18
2 Level 3 47
3 Level 4 37

(a) Synthetic data generated before standardization

(b) Synthetic data generated after standardization
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Figure 4: Comparison of synthetic data on a single X-axis before and after standardization

For consistency, ten gait samples were collected per
participant. Data were recorded using eight optical cameras
(100 Hz) and two force plates (1000 Hz) while subjects
walked along a 6-meter track [25]. The raw motion data
were segmented into gait cycles and resampled to 101 time
points. Angular velocity signals from six bilateral joints—
ankles, knees, and hips—were used to create 18-
dimensional feature vectors for each frame, totaling 101
frames per sample, as detailed in Table 2. Disease severity
was categorized into four levels: 0 (asymptomatic), 2, 3,
and 4, reflecting increasing symptom severity.

B. Experimental Setup

1) Implementation Details: The proposed frame-
work is implemented using the PyTorch library and trained
on a system equipped with an NVIDIA RTX 3090 GPU.
The model is trained for 150 epochs with a batch size of 8.
Optimization is performed using the Stochastic Gradient
Descent (SGD) algorithm, with a momentum of 0.9. The
initial learning rate is set to 0.001 and is reduced to 0.0001
after 70 epochs.

2) Evaluation Metrics: To provide a comprehensive
evaluation of the model's performance, two metrics are
utilized: Accuracy (ACC) and Area Under the Curve
(AUC). Accuracy is calculated as:

24: TP+TN
- 9
Accuracy = 2 TP +TN4+ FP+FN  (9)

Here, TP, TN, FP, and FN denote the number of
true positives, true negatives, false positives, and false
negatives, respectively.

The AUC, which calculates the area beneath the
Receiver Operating Characteristic (ROC) curve, is used to
investigate the capacity of distinguishing between classes.
A higher value of AUC represents the better model per-
formance.

3) Cross-validation: Given the limited size of the
dataset, five-fold cross-validation is employed to ensure
reliable evaluation. The dataset is divided into five strati-
fied folds, maintaining the class distribution within each
fold. In each iteration, four folds are used for training and
the remaining one for validation, with each fold serving as

the validation set exactly once. Additionally, to account for
the fact that each subject contributes multiple gait samples,
Stratified Group K-Fold cross-validation is applied 26.
This method ensures that data from a single subject are not
simultaneously included in both the training and validation
sets, effectively preventing data leakage and offering a
more realistic evaluation of the model's generalization per-
formance in subject-independent scenarios.

C. Evaluation of Generated Samples

To assess the quality of synthetic time-series data
produced by the adversarial model, this study employs four
complementary methods: Raw data visualization, Principal
Component Analysis (PCA), t-Distributed Stochastic
Neighbor Embedding (t-SNE), and similarity score compu-
tation.

4) Raw data visualization: Visualizing augmented
time-series data provides an intuitive means to assess the
fidelity of synthetic sequences generated through data
augmentation. Theoretically, for synthetic data to be con-
sidered reliable, it should exhibit statistical consistency
with real data across critical kinematic dimensions—such
as amplitude fluctuations, base frequency cycles, and time-
frequency evolution characteristics. This ensures that the
synthetic data maintains morphological similarity to real
signals, thereby confirming its practical usability for gait
analysis and offering a straightforward basis for evaluating
the effectiveness of augmentation strategies.

As depicted in Figure 4, synthetic data generated
before and after standardization is compared with real data.
The corresponding real data is shown as the red curve in
Figure 2(b). Both pre- and post-standardization synthetic
data closely align with real data in terms of amplitude, pe-
riodicity, and overall trend, confirming their visual similar-
ity. However, the pre-standardization synthetic data exhibit
noticeable noise and irregularities, resulting in less smooth
curves and greater susceptibility to heteroscedastic noise
interference between multidimensional sequences. In con-
trast, the post-standardization synthetic data demonstrate
improved smoothness and reduced noise, highlighting the
importance of standardization in improving the quality and
reliability of synthetic data for gait analysis applications.
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(2) PCA and t-SNE distributions before standardization

{b) PCA and t-SNE distributions after standardization
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Figure 5: The distribution of real and synthetic data after dimensionality reduction using PCA and t-SNE methods before
and after standardization

Table 3: Similarity score between real data and synthetic data before and after standardization

- Similarity Score

Standardization Label=0 Label=1 Label=2 Label=3
Without 0.979 0.762 0.867 0.902
With 0.993 0.895 0.976 0.924

Visualizations with PCA and t-SNE: To assess the f Zm g

distribution of synthetic data in the feature space and its 55 gjm =R G _ i=1 Ri Gi
similarity to real data, PCA and t-SNE are used for dimen- - || fR”” f ” m L, T (11)
sionality reduction. PCA identifies the principal compo- \/Zi—l fm/zi:l fGi
nents accounting for the largest variance in the data and f f
projects high-dimensional sequences into a lower- where 'R and © denote the feature vectors of real

dimensional space. Examining the PCA scatterplots allows
assessment of whether the synthetic data extends the origi-
nal distribution and fills gaps between clusters. In contrast,
t-SNE excels at visualizing local structures, helping us
determine if the augmented data forms clusters similar to
those of the real data or introduces new groupings.

As shown in Figure 5, the distributions of synthetic
and real data before and after standardization were com-
pared using PCA and t-SNE. The PCA plots reveal signifi-
cant overlap between both standardized and non-
standardized synthetic data and real data, indicating that
the synthetic data captures the overall distribution and
clustering structure. This overlap suggests statistical con-
sistency with the real data and effective simulation of its
global structure. Moreover, separation beyond the overlap
indicates that the synthetic data introduces additional vari-
ability, enhancing dataset diversity and reducing
overfitting risk. In the t-SNE plots, standardized synthetic
data exhibits closer alignment with real data, forming well-
defined clusters. This indicates that standardization im-
proves the local structural fidelity of the generated data,
better capturing the intricate relationships in the real data.

These observations confirm that standardization en-
hances both the global and local consistency of synthetic
data, supporting its effectiveness as a high-quality augmen-
tation method for gait analysis.

Similarity score computation: To quantitatively
evaluate the similarity between synthetic and real gait se-
quences, the similarity score is defined using the average
cosine similarity of feature vectors. For each sequence,
seven statistical features—median, mean, standard devia-
tion, variance, root mean square, maximum, and minimum
are extracted—resulting in a 7-dimensional feature vector:

f =< feature, feature,,..., feature, > (10

The cosine similarity between each pair of real and
synthetic feature vectors is computed as follows:

and synthetic signals, respectively, each of length M The
average cosine similarity is then calculated across all pairs
of feature vectors belonging to the same class, providing a
measure of overall similarity:

1 n
avg _cos_sim== Zcos_ sim.
i=1

In our experiments, 30 synthetic samples per class
were trained, and the cosine similarity scores were com-
puted before and after standardization. The results, pre-
sented in Table 3, indicate that for each hip osteoarthritis
(HOA) severity level, the synthetic samples generated by
the standardized model exhibit higher average cosine simi-
larity to real samples compared to those generated without
standardization.

In summary, these similarity analyses of augmented
time-series data suggest that incorporating multi-
dimensional data standardization into the synthesis process
enhances the fidelity of synthetic gait data, reducing noise
and improving its alignment with real data.

Analysis of Enhanced Classification Algorithm Re-
sults. The impact of data augmentation on classification
performance was evaluated by training models using a
combination of real and synthetic data from the HOA da-
taset. The dataset is categorized into four classes based on
severity levels: 80 samples from the control group (class
0), 18 samples with mild severity (class 1), 47 samples
with moderate severity (class 2), and 37 samples with se-
vere symptoms (class 3). To address the underrepresenta-
tion of moderate severity samples (class 2), a higher aug-
mentation factor was applied specifically to this class. The
experimental design involved constructing a new training
set by merging the original samples with augmented data,
and then comparing the results with models trained solely
on the original dataset.

(12)
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Table 4: The impact of different enhancement schemes on the accuracy of each fold

1 i 0,
Enhancement schemes FOCI(;(;SS Vil(;?;tzlon Og(ﬁ‘é:g /olzof:)dr zach II(())II((jj 5 Average ACC (%) Average AUC (%)
No Augment 83.24 | 87.84 | 90.86 | 86.00 | 85.56 86.70 79.58
0.5 times 85.95 | 87.71 | 86.39 | 85.23 | 89.97 87.05 79.53
1 times 87.16 | 88.11 | 88.89 | 85.97 | 90.83 88.21 80.47
1.5 times 86.78 | 88.10 | 89.02 | 82.37 | 88.34 86.922 79.45

* On the basis of the original enhancement factor, the second type of data has been increased by an additional 0.5 times.

Table 5: Performance of various enhancement methods on the HOA dataset

i i 0,
Method Fol((jzlr 035 \g:gaztlon OII(;AI‘(??? (/o)Fgokrj ZaCh f(l):lgl J5 Average ACC (%) Average AUC (%)
No Augment 83.24 87.84 90.86 86.00 85.56 86.70 79.58
MTS-CGAN 86.02 85.39 84.24 81.16 85.23 84.41 76.56
TTS-CGAN 86.70 87.91 85.86 86.72 86.75 86.79 79.62
Z-TransCGAN 87.16 88.11 88.89 85.97 90.83 88.21 80.47

To align with the cross-validation training scheme,
augmentation models were trained independently for each
fold, generating synthetic samples based on the corre-
sponding training set. These augmented models were sub-
sequently evaluated on their respective test sets to rigor-
ously assess the effectiveness of the proposed data aug-
mentation strategy. Table 4 presents the classification ACC
across five folds under different augmentation strategies,
along with the average ACC and AUC scores.

As presented in Table 4, augmenting the number of
samples in classes 0, 1, and 3 by twofold and increasing
class 2 by 1.5 times resulted in the highest average ACC of
88.21% and AUC of 80.47%. Compared to the baseline
model without augmentation, this represents improvements
of 1.51% in ACC and 0.89% in AUC. These results indi-
cate that the proposed data augmentation approach effec-
tively alleviates the challenges of limited and imbalanced
data, thereby enhancing the overall classification perfor-
mance.

E. Comparative Experiment Results and Analysis

To validate the effectiveness of the proposed gait
data augmentation method, comparative experiments are
conducted to assess the classification performance after
generating augmented gait sequences using various time-
series augmentation methods. To ensure a fair comparison,
the same raw training and testing samples, along with iden-
tical classification models, are used across all algorithms.
The detailed classification performance comparison results
are presented in Tables 5.

1) No Augment: This baseline directly trains and
tests the model on the original, non-augmented dataset,
without applying any data augmentation techniques.

2) MTS-CGAN: Multivariate Time Series Condi-
tional Generative Adversarial Network 27is a Transformer-
based generative model that adjusts the generator’s output
using encoded contextual information. It enables a single
model to learn the mixed distribution of data from multiple
classes, allowing for realistic modeling of multivariate
time series under various conditions.

3) TTS-CGAN: The Transformer Time-Series Con-
ditional GAN 21, as introduced earlier, corresponds to the

conditional adversarial augmentation network but omits
the normalization preprocessing step. While this approach
facilitates the generation of synthetic time-series data, it
exhibits limitations in producing high-quality sequences
for longer, non-stationary signals.

The results of the comparative experiments indicate
that the proposed improved method consistently outper-
forms other approaches. Specifically, when MTS-CGAN
was used for data augmentation, the accuracy of cross-
validation decreased to varying extents in all folds. This
indicates that the synthetic data produced by MTS-CGAN
exhibited lower quality, and mixing this data with the orig-
inal training set hindered the model from learning effective
classification weights, ultimately leading to performance
degradation. In contrast, both the TTS-CGAN and the im-
proved Z-TransCGAN methods resulted in significant per-
formance improvements. Notably, the incorporation of the
standardization process further enhanced the quality of the
synthetic data. Compared to TTS-CGAN, this improve-
ment resulted in a 1.42% improvement in average ACC
and a 0.85% gain in average AUC, effectively optimizing
the general time-series augmentation algorithm for gait
sequence synthesis.

Figure 6 displays the confusion matrix and ROC
curves for the enhanced gait classification algorithm based
on Z-TransCGAN, illustrating disease grading results. In
Figure 6(a), the confusion matrix is presented, showcasing
the model's performance across four categories. Each cell
represents the normalized probability of a specific combi-
nation of predicted and true labels, offering valuable in-
sights into the model's class-wise performance. Figure 6(b)
illustrates the ROC curves, which demonstrate the trade-
off between the true positive rate and the false positive rate
at various thresholds. The AUC quantifies the model’s
discriminative ability, with values closer to 1 indicating
better performance. The model performs best in class 0O
(AUC = 0.9686), effectively diagnosing whether a subject
has HOA. However, the diagnostic performance for class
1, representing mild patients, is relatively ambiguous
(AUC = 0.6253), likely due to the less pronounced gait
abnormalities in this group.
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(a) Confusion Matrix
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Figure 6: Confusion matrix and ROC curves for Z-TransCGAN-based gait classification

IV. Conclusion. This study presents Z-
TransCGAN, a Transformer-based conditional GAN en-
hanced with Z-score normalization, specifically designed
to generate high-quality multivariate gait time-series data
for disease diagnosis and severity grading. By standardiz-
ing input features, Z-TransCGAN mitigates scale dispari-
ties and reduces heterogeneous noise interference, leading
to improved model performance. Experimental validation
on the HOA dataset demonstrates that Z-TransCGAN out-
performs TTS-CGAN, achieving a 1.42% increase in aver-
age ACC and a 0.85% increase in average AUC. These
findings underscore the effectiveness of Z-TransCGAN as
a data augmentation method, enhancing both synthetic data
generation and downstream classification tasks in gait
analysis.

From a clinical perspective, the ability to generate
synthetic gait data that accurately reflects disease-specific
patterns is crucial for training robust diagnostic models,
especially when real-world data is scarce. However, it is
important to note that gait signals inherently contain indi-
vidual-specific information, such as personal walking
styles, which can inadvertently be learned by generative
models. This unintended memorization poses privacy con-
cerns and may affect the generalization ability of models
trained on synthetic data.

To tackle this issue, future research should priori-
tize the development of methods that can disentangle dis-
ease-related features from individual-specific attributes
within gait data. Approaches such as adversarial training,
differential privacy, or attribute editing frameworks could
be explored to anonymize synthetic gait sequences while
preserving their diagnostic utility.
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Z-TRANSCGAN: YC/IOBHAS TEHEPATHBHO-
COBHPATE/ILHAS CETh HA OCHOBE
ITPEOBPA30BATEJIA C HOPMATH3AIIHEH Z-
OLIEHKH JUIA JOITOJTHEHHA JAHHBIX O
IMTOXO/IKE

FOanvroanv Cyn, @aii Jlo, FO03 An, Xyapone Lllao,
Hloouxynosa I'.3., babamypaoosa 3.b., bun /[cu

Pesztome. Ananuz noxooku neobxooum 0nst OUAzHO-
cmuKu 3a001€8aHUl, NPOGEPKU TUUHOCHU U OYEHKU peabu-
aumayuu. OOHaxo 3¢hpexmugHocmes n00X0008 21yO6oKo2o
00VueHUss 8 aHaIuze NOXOOKU COEPAHCUBAEMCS CIONHCHO-
cmbio chopa KpYRHOMACWUMAOHBIX 6bICOKOKAYECMBEHHbIX
OAHHBIX BPEMEHHBIX PIO08 NOXOOKU, YMO SBAAEMCS O0PO-
20CMOSIUM, MPYOOEMKUM U ROOYUHSIEMCS. CIMPO2UM NPa-
sunam Kougpuoenyuarbnocmuy. IDKCnepumenmaivivle pe-
3ynbmamsl Ha Habope oannvix HOA nokasvigarom, umo Z-
TransCGAN npesocxooum TTS-CGAN, oocmueas 1,42%
yeenuyenus cpeonei mounocmu kaaccuguxayuu (ACC) u
0,85% yeenuuenus niowaou noo kpusou (AUC). Dmu pe-
3yntemamel  noomeepicoaiom  3pexmusnocms  Z-
TransCGAN kak cmpamezuu OONOIHEHUS OAHHBIX O
aHanuza noXoOKU, YIAYYuidsi KaK 2eHepayuio cunmemuye-
CKUX OQHHBIX, MAK U NPOU3BOOUMENbHOCMb KIACCUPUKA-
Yuu HudHICe NO NOMOKY.

Knrouesvie cnoea: I'nybokoe obyuenue; Ycnoguvie
eenepamususie cocmazamenvhvie cemu (CGAN); Ananus
noxooxu, /lononnenue dannvix, Tpancghopmep.
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