УДК: 617-089.844

ПЛАСТИКА ДЕФЕКТОВ КОСТИ ПРИ ОСТЕОМИЕЛИТЕ

Довгалевич Иван Иванович, Титова Александра Дмитриевна, Мартинович Александр Владимирович Белорусский государственный медицинский университет, Республика Беларусь, г. Минск

ОСТЕОМИЕЛИТДАГИ СУЯК НУКСОНЛАРИНИ ПЛАСТИК ЖАРРОХЛИК

Довгалевич Иван Иванович, Титова Александра Дмитриевна, Мартинович Александр Владимирович Беларус давлат тиббиёт университети, Беларус Республикаси, Минск ш.

PLASTIC SURGERY OF BONE DEFECTS IN OSTEOMYELITIS

Dovgalevich Ivan I. Titova Alexandra D., Martinovich Alexander V. Belarusian State Medical University, Republic of Belarus, Minsk

e-mail: ivan.dovgalevich@gmail.com

Резюме. Остеомиелитда суяк нуқсонларини тулдириш муаммоси жуда долзарбдир. Уни алмаштириш усулини танлаш хали хам мунозарали бўлиб қолмоқда. Бироқ, комбинацияланган таъсир қилиш усуллари енг долзарб бўлиб қолмоқда. Калит сўзлар: остеомиелит, суяк нуқсони.

Abstract. The problem of filling bone defects in osteomyelitis is very relevant. The choice of a replacement method is still debatable. However, methods of combined exposure remain the most relevant.

Keywords: osteomyelitis, bone defect.

Актуальность исследования. Проблема лечения пациентов с остеомиелитом, особенно посттравматическим, в последние годы приобрела особую актуальность. Это связано с развитием антибиотико-резистентной микрофлоры, иммуносупрессией, роста количества тяжелых скелетных повреждений и расширением показаний для применения имплантов. Длительный инфекционный процесс приводит к потере костной массы с образованием полостей и дефектов, являющихся патоморфологическим субстратом, поддерживающим упорное прогрессирующее течение гнойного процесса. Пациенты с остеомиелитом подвержены риску развития нарушений естественных процессов остеорегенерации. Возникает состояние, описанное в литературе как «остеогенная недостаточность» [1, 2, 3, 4]. Для достижения стойкой ремиссии инфекционного процесса первоочередным мероприятием является радикальная санация патологического очага [5]. Основные трудности возникают на этапе реконструктивно-восстановительного лечения. Спектр применяемых методов лечения очень широк [6, 7]. При изучении известных методов пластики дефектов кости (аутологичной костью, аллокостью, миопластики) мы определили возможности и ограничения их применения, и выявили необходимость поиска метода стимуляции репаративного потенциала костной ткани и замещения дефекта кости с использованием дополнительных источников остеорегенерации.

Цель исследования. Улучшить результаты лечения пациентов с остеомиелитическими дефектами длинных трубчатых костей путем применения дифференцированной хирургической тактики.

Материал и методы исследования. Материалом исследования стали 198 пациентов с остеомиелитом длинных трубчатых костей, наблюдавшихся в Минском городском центре остеомиелитов. В зависимости от метода костной пластики выделили 4 группы пациентов: 1-я группа — «Миопластика», n = 46 (выполнили пластику мышечным лоскутом); 2-я группа — «Аллопластика», n = 54 (применили пластику замороженным аллотрансплантатом); 3-я группа — «Аутопластика», n = 56 (провели пластику аутотрансплантатом из гребня подвздошной кости); 4-я группа — «Рабочая», n = 42 (применили разработанный метод трансплантации биоткани). Среди 148 мужчин (74,7%) и 50 женщин (24,3%) большинство пациентов были трудоспособного возраста — от 18 до 60 лет (95,6%).

Статистически значимых различий между группами по возрасту (U = 948, p = 0.192) и полу (χ^2 = 4.66, p = 0.200) не было.

При анализе социального статуса пациентов выявили высокую частоту длительной утраты трудоспособности с установленной группой инвалидности: 2-ой — 54,0%, 3-ей — 14,1%, 1-ой — 5,1%. Пациенты с временной утратой трудоспособности составили 22,7%, пенсионеры — 3,5%. На момент начала лечения у 73,2% пациентов была установлена группа инвалидности.

Локализация патологического очага была различной (голень, бедро, плечо, предплечье, ключица). Статистический значимых различий между группами по локализации патологического процесса не было (χ^2 = 68,60, p = 0,617), (F = 0,12, p = 0,757).

Длительность заболевания составила от 3-х месяцев до 25 лет: от 3-х месяцев до 1 года — 37 (18,7%), от 1года до 3-х — 118 (59,6%), от 4-х до 5-и лет — 11 (5,5%), от 6-и до 10-и — 18 (9,1%), от 11-и до 15-и — 11 (5,5%), от 15-и до 25-и -3 (1,5%).

В исследовании использовали следующие методы: клинический, включающий, кроме общего обследования, оценку качества жизни по форме MOS SF-36 и оценку анатомо-функциональных результатов по методике Любошица — Маттиса — Шварцберга; инструментальный, с расчетом средней оптической плотности (СОП) костного дефекта по рентгено-

«ВЫСОКИЕ ТЕХНОЛОГИИ В ХИРУРГИИ»

граммам; лабораторный, с анализом уровня активности фосфомоноэстераз (щелочная и кислая фосфотазы) и расчетом их отношения в виде фосфатазного индекса (ФИ); бактериологический и статистический.

Результаты исследования. На основании клинико-морфологических проявлений заболевания, стадии и динамики патологического процесса был предложен алгоритм выбора тактики хирургического лечения пациентов с остеомиелитическими дефектами длинных трубчатых костей. Выполнили многофакторный анализ с оценкой отношений шансов на каждом этапе алгоритма, при котором выявили статистическую достоверность выдвинутой гипотезы [11].

Показания к хирургическому вмешательству:

- 1. Клинические: наличие признаков инфекционно-воспалительного процесса, неэффективность консервативного лечения, нарушение целостности кости, функциональная непригодность конечности.
- 2. Рентгенологические: периостит, наличие секвестра, контрастированный свищевой канал, дефект кости, отсутствие сращения, деформация кости.
- 3. Другие инструментальные: гнойно-воспалительное поражение близлежащих суставов, экссудативный выпот в мягких тканях, повышенное накопление радиофармпрепарата в зоне поражения более 200%.
- 4. Лабораторные: повышение показателей маркеров воспаления, показатель ФИ менее 13, наличие роста микроорганизмов при бактериологических исследованиях.

Хирургическое лечение заключалось в двух этапах: санация инфекционного очага и реконструктивновосстановительный этап, включающий замещение костного дефекта, утраченных мягких тканей, а также восстановление целостности кости.

Санация инфекционного очага заключалась в удалении всех нежизнеспособных и инфицированных тканей с применением доступных механических, химических и физических методов антисептики.

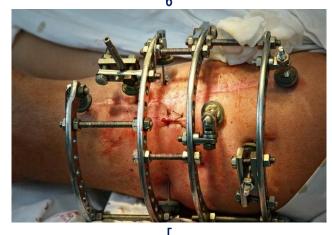
При планировании второго этапа лечения определяли вид дефекта костной ткани и оценивали состояние мягких тканей.

Вид нарушения целостности кости и костного дефекта определили выбор метода фиксации костных фрагментов. При частичном нарушении целостности, в случаях пострезекционных (краевых, внутрикостных) и субтотальных дефектов использовали иммобилизацию гипсовой лонгетой сроками до полного заживления операционной раны. При полном нарушении целостности кости потребовалась фиксация костных фрагментов аппаратами внешней фиксации. У пациентов с сегментарными до 3 см и субтотальными дефектами с угрозой повторного перелома кости выполнили один из методов монолокального внеочагового остеосинтеза по Г. А. Илизарову (продольный компрессионный, встречно-боковой, чередующийся компрессионно-дистракционный). В случаях сегментарных дефектов свыше 3 см выполнили билокальный компрессионно-дистракционный остеосинтез по Г. А. Илизарову.

Выбор метода закрытия дефектов мягких тканей зависел от состояния краев операционной раны, выраженности рубцового процесса, распространенности и глубины поражения.


Выбор костно-пластического материала проводили дифференцированно, в зависимости от общесоматического состояния, распространенности и давности заболевания, вида и локализации дефекта кости. При локализации очага с сохраненным массивом мышц и частичным нарушением целостности кости (пострезекционный краевой или внутрикостный дефект) применили мышечную пластику. В случаях обширных дефектов, при наличии хорошо кровоснабжаемого костного реципиентного ложа, высоком реабилитационном потенциале, а также при необходимости провести только оптимизацию естественного репаративного процесса использовали остеопластический материал без биологической активности, характеризующийся лишь остеокондуктивными свойствами (аллотрансплантат). Когда требовались идеальные остеоиндуктивные и остеокондуктивные свойства, высокая механическая прочность трансплантата, а также в случаях предшествующих неудачных аллотрансплантаций выполнили кортикоспонгиозную пластику аутотрансплантатом из крыла подвздошной кости. У пациентов со сниженной активностью естественных остеоиндуцирующих факторов, при длительном тяжелом течении воспалительного процесса с угнетением всех механизмов остеогенеза применили разработанный метод костной пластики трансплантационной смесью.

Оригинальный метод пластики дефектов кости при остеомиелите разработали на основании большого накопленного опыта экспериментальной и клинической медицины, на который получили патент Республики Беларусь № 23367 от 25.02.2021 «Способ костной пластики при хирургическом лечении вторичных остеомиелитических дефектов длинных трубчатых костей», утверждена Министерством здравоохранения Республики Беларусь инструкция по применению [12, 13].


Разработанный метод заключался в комплексном многоплановом подходе:

- 1. На первом этапе проводили радикальную хирургическую обработку инфекционного очага с применением физических, механических и химических способов хирургической антисептики (санацию). Одноэтапно или отсроченно выполнили реконструктивно-восстановительное лечение.
- 2. Подвздошную кость пунктировали по методу Аринкина на 1-2 см кзади от передней верхней ости ее гребня при помощи иглы для забора костного мозга 14G.
- 3. В стеклянном стакане полученный аспират костного мозга смешивали с измельченным деминерализованным костным аллотрансплантатом, добавляли растворы дексаметазона фосфата (8 мг), L-аскорбиновой кислоты (1000 мг), глюконата кальция (200 мг), рифампицина (300 мг). Выдерживали экспозицию 10–15 минут (рисунок 1-б).

а — забор костного мозга из крыла подвздошной кости; б — подготовленная трансплантационная смесь; в — тугое заполнение костного дефекта; г — послеоперационная рана зашита наглухо

Рис. 1. — Этапы костно-пластического замещения дефекта плечевой кости по разработанному методу

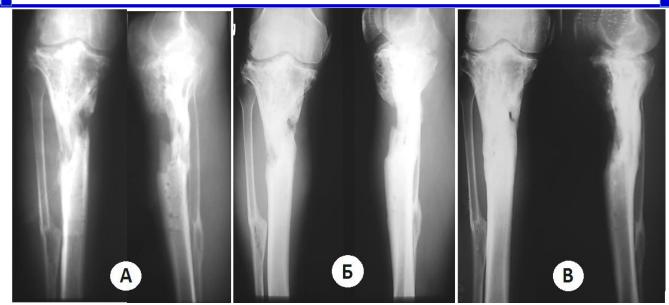
1. На пораженном сегменте в проекции патологического очага выполнили хирургический доступ длиной 3-4 см через не измененные рубцами ткани, выделяли дефект кости, освобождали его от рубцовой ткани, стенки полости перфорировали сверлом или спицей в шахматном порядке, вторичную полость туго заполнили трансплантационной смесью (рисунок 1-в).

Послеоперационную рану зашивали наглухо; конечность иммобилизировали (рисунок 1-г).

По разработанному методу пролечили 42 пациента с инфицированными дефектами длинных трубчатых костей, которые составили группу «Рабочая».

Локализация патологического очага была различной: большеберцовая кость — 29 случаев (69,0%), бедренная кость — 10 (23,8 $\stackrel{.}{\text{\tiny{$^\circ$}}}$), плечевая кость — 1 (2,4 $\stackrel{.}{\text{\tiny{$^\circ$}}}$), ключица — 2 (4,8 $\stackrel{.}{\text{\tiny{$^\circ$}}}$).

Виды дефектов были следующие: внутрикостный — 8 случаев (19,1%), краевой — 6 (14,3%), субтотальный — 14 (33,3%), сегментарный до 3 см — 10 (23,8%), сегментарный свыше 3 см — 4 (9,5%). Частичное нарушение целостности кости было диагностировано у 16 пациентов (38,1%). Полное нарушение целостности кости выявили в 26 случаях (61,9%), при которых выполнили один из видов компрессионно-дистракционного остеосинтеза. С ложным суставом был 21 пациент (50,0%), с несросшимся переломом — 5 (11,9%). Статистически значимых различий не было ($\chi^2 = 3,20$, р = 0,525).


Размер костного дефекта варьировался в зависимости от вида. Небольшие полости (до 15 см³) определяли в 14 наблюдениях (33,3%) при внутрикостных и кераевых дефектах. Крупные полости (свыше 15 см³) в 28 случаях (66,7%) были в виде субтотальных и сегментарных дефектов.

Радикальную хирургическую обработку инфекционного очага выполнили всем пациентам. У 24 пациентов (57,1%) лечение было одноэтапное, в 18 случаях (42,9%) реконструктивно-восстановительный этап был отсрочен на 2–6 недель.

Санацию дефекта дополняли ультразвуковой кавитацией в растворе канамицина 1,0 г в течение 10 минут аппаратом УРСК-7Нв с частотой 26.5 ± 7.5 кГц и амплитудой колебаний 0.14-0.08 мкм. Вторичную полость заполняли по разработанному методу.

Первичным натяжением заживление ран произошло в 38 случаях (90,5%). У 4 пациентов (9,5%) наблюдали осложнения раннего послеоперационного периода. В 1 случае (2,4%) наступило глубокое нагноение, однако оно не потребовало повторных хирургических вмешательств и изменения метода лечения. В 3 наблюдениях (7,1%) произошел краевой некроз послеоперационной раны, что увеличило сроки стационарного лечения.

«ВЫСОКИЕ ТЕХНОЛОГИИ В ХИРУРГИИ»

а — после санирующего этапа лечения; б — через 90 суток после реконструктивно-восстановительной операции; в через 360 суток

Рис. 2. — Субтотальный инфицированный дефект большеберцовой кости (Пациент 3., 49 лет)

Клинический пример 1. Пациент 3., 49 лет, ист. б-ни № 8761. Диагноз: хронический гематогенный остеомиелит левой голени, свищевая форма. Ап. morbi: болеет с детства, за 2 года до поступления получил патологический перелом, выполнили накостный остеосинтез, через 9 месяцев послеоперационный период осложнился глубоким нагноением, фиксаторы удалили, спустя 5 недель на голени открылись свищи. При поступлении выявили рубцовые изменения мягких тканей, свищевые каналы с обильным гнойным отделяемым. После предоперационной подготовки и планирования операции провели радикальную хирургическую обработку патологического очага, рану дренировали приточно-отточным дренажом. Через 3,5 недели после получения трех результатов микробиологического исследования без роста микроорганизмов удалили дренаж и выполнили костную пластику вторичного дефекта предложенным методом. На контрольной рентгенограмме через 90 суток определили дефект большеберцовой кости, заполненный однородной структурой, формирующимися костными балками (рисунок 2-б). При контрольном осмотре через год после реконструктивновосстановительного лечения не выявили клинических признаков гнойно-воспалительного процесса.

Клинический пример 2. Пациент А., 41 год, ист. б-ни № 758. Диагноз: хронический посттравматический остеомиелит левой голени, свищевая форма, гнойно-некротическая рана передней поверхности голени. An. morbi: в результате криминальной травмы получил открытый перелом левой голени в средней трети и закрытый в нижней трети, в тюремной больнице выполнили погружной остеосинтез, через 4 недели после операции дренировали флегмону голени и сформировали свищевые каналы, спустя 5 лет после травмы поступил на стационарное лечение в центр остеомиелитов. При поступлении выявили выраженные трофические нарушения на фоне посттромбофлебитического синдрома, рубцовые изменения мягких тканей, свищи с обильным гнойным отделяемым, пациент передвигался при помощи костылей без нагрузки на больную ногу. В лабораторных анализах обнаружили анемию (гемоглобин — 105 г/л, эритроциты — 2.85×10^{12} /л), лейкоциты (3.5×10^{9} /л, сдвиг лейкоцитарной формулы с появлением палочкоядерных нейтрофилов до 8%), СОЭ (58 мм/ч), СРБ (4,9 мг/л), ФИ (6,2 ед./л). После предоперационной подготовки и планирования операции выполнили удаление фиксаторов, радикальную хирургическую обработку, приточно-отточное дренирование, иммобилизацию голени задней гипсовой лонгетой. При рентгенографии после операции обнаружили обширный дефект большеберцовой кости в средней трети, признаки линейного периостита, очагов деструкции и секвестров не было, СОП середины костного дефекта составил 0,12 (рисунок 3- а). При бактериологическом исследований на протяжении 20 суток обнаруживали рост полирезистентных штаммов Ps. aeruquinosae. Спустя 35 суток после получения трехкратного отрицательного результата бактериологического исследования удалили дренаж и выполнили монолокальный компрессионно-дистракционный остеосинтез аппаратом Илизарова и костную пластику вторичного дефекта по разработанному методу. В лабораторных исследованиях выявили: лейкоциты (4,2×109/л, сдвига лейкоцитарной формулы не было), СОЭ (25 мм/ч), СРБ (3,5 мг/л), ФИ (7,5 ед./л). При рентгенографии определили фиксацию костных фрагментов аппаратом, ось правильная, в средней трети — дефект большеберцовой кости, заполненный неоднородной гомогенной тканью, СОП = 0,38 (рисунок 3-б). Через 210 суток после начала лечения пациент передвигался при помощи трости с полной нагрузкой на больную ногу, не выявили признаков обострения гнойной костной патологии, свищей не было, отек голени незначительный, аппарат внешней фиксации был стабилен, мягкие ткани в местах прохождения спицевых фиксаторов — без признаков воспаления. В лабораторных анализах маркеры воспаления — лейкоциты (6,4х109 /л), СОЭ (20 мм/ч), СРБ (0,9 мг/л), ФИ = 13,5 ед./л. На рентгенограммах выявили признаки консолидации и полного замещения дефекта кости тканью, близкой по СОП (0,96) к костной, периостальной реакции большеберцовой кости, очагов деструкции, секвестров не обнаружили. Приняли решение о демонтаже аппарата внешней фиксации (рисунок 3-в). При контрольном осмотре через 3 года не выявили клинико-рентгенологических признаков гнойно-воспалительного процесса. В лабораторных анализах показатели маркеров воспаления — лейкоциты ($6,4 \times 10^9 / \pi$), СОЭ (8 мм/ч), СРБ (1,9 мг/л), ФИ = 12,8 ед./л. На рентгенограммах определили признаки законченного ремоделирования кости в области костной пластики (рисунок 3-г).

Халкаро илмий-амалий конференция

а — после санирующего этапа лечения; б — после реконструктивной операции; в — через 210 суток; г — спустя 3 года

Рис. 3. — Инфицированный субтотальный дефект большеберцовой кости (Пациент А., 41 год)

Обсуждение. Клинические проявления остеомиелита длинных трубчатых костей многообразны и зависят от стадии гнойно-воспалительного процесса.

Рентгенография является основным методом диагностики остеомиелита. Патогномоничными признаками являются: линейный периостит, костный секвестр, гиперостоз, отслойка надкостницы, резорбция костно-мозгового канала (р = 0,009) (чувствительность рентгенографии — 58,0 %, специфичность — 80,0%, AUC = 0,768). Эффективность исследования повышается при фистулографии (чувствительность метода — 82,0%, специфичность — 95,0%, AUC = 0,834), (р = 0,018). Разработанный метод определения средней оптической плотности кости без сомнения позволяет дать количественную оценку процессов костного ремоделирования, чем ближе значение к 1,0, тем более выражена костная структура, что улучшает возможности предоперационного планирования.

Миопластика костной полости выполняется при достаточном мышечном массиве и частичном нарушении целостности кости (пострезекционный, субтотальный дефект). Костное ремоделирование не происходит, костный дефект замещается фиброзной тканью.

Пластика костного дефекта замороженной аллокостью применяется при полостях с хорошо кровоснабжаемыми стенками, когда необходимы остеокондуктивные свойства костного трансплантата. Ремоделирование кости происходит замедленно по типу «рассасывания — замещения».

Аутопластика дефекта кости кортико-спонгиозным трансплантатом используется в случаях, когда кроме заместительных свойств материала (остеокондукция) требуется стимуляция остеогенеза (остеоиндукция). Эффективность трансплантации подтверждается изменениями маркеров остеогенеза и минерализацией дефекта кости.

Предложенный метод замещения дефекта кости биотканью, заключающийся в трансплантации смеси аутологичного костного мозга, измельченного деминерализованного аллогенного костного трансплантата, растворов дексаметазона и L-аскорбиновой кислоты патогенетически обоснован, прост в использовании, малоинвазивен. Может быть применен у пациентов с часто рецидивирующим течением заболевания с угнетением процессов репаративной остеорегенерации. Относится к комбинированному методу трансплантации за счет сходства с процессами костного ремоделирования при аутопластике и аллотрансплантации. Данные лабораторных и инструментальных исследований через 360 суток после трансплантации свидетельствуют об угасании активности остеобластов, переходе к завершающей стадии костеобразования и наступлении фазы минерализации костного трансплантата: Φ И — 12,60 (8,60–15,10), (p = 0,001), $CO\Pi$ — 0,96 (0,92–1,00), (p = 0,001). Различия показателей фосфатазного индекса (p = 0,001) и средней оптической плотности (p = 0,001) до и после операции достоверно значимы.

Выводы.

- 1. Диагностика остеомиелитических дефектов длинных трубчатых костей должна быть комплексной и включать обязательные и дополнительные клинико-инструментальные методы обследования. Так, для оценки остеорегенераторных процессов целесообразно проводить определение показателей щелочной и кислой фосфатазы с вычислением фосфатазного индекса, а также вычисление средней оптической плотности по стандартным рентгенограммам. При наличии свищевого хода обязательным является выполнение фистулографии с тугим заполнением канала рентген контрастным препаратом.
- 2. Лечение пациентов, вне зависимости от локализации патологического очага, должно быть дифференцированным и комплексным, заключается в предоперационной подготовке, радикальной хирургической обработке, замещении дефекта кости и мягких тканей, послеоперационной реабилитации.
- 3. Для замещения костных дефектов при достаточном массиве неизмененных мышц и частичном нарушении целостности кости показано применение мышечной пластики.
 - 4. Использование замороженной аллокости для костной трансплантации показано только с целью остеокондукции.

«ВЫСОКИЕ ТЕХНОЛОГИИ В ХИРУРГИИ»

- 5. Использование аутокости в качестве трансплантата показано при необходимости остеокондукции и стимуляции остеоиндуктивного механизма остеогенеза.
- 6. Разработанный метод костной пластики патогенетически и теоретически обоснован, малоинвазивен, прост в применении, не требует значительных материальных затрат, запускает все известные механизмы репаративного остеогенеза за счет компонентов трансплантационной смеси. Способ показан при тяжелом и длительном течении воспалительного процесса с угнетением всех механизмов остеогенеза.

При сегментарном дефекте длинной трубчатой кости помимо костной пластики, необходимо выполнять стабильный остеосинтез аппаратом внешней фиксации, компоновка которого детализируется для каждой клинической ситуации.

Литература:

- 1. Деев, Р. В. Создание и оценка биологического действия, ген-активированного остеопластического материала, несущего ген VEGF человека / Р. В. Деев [и др.] // Клеточная трансплантология и тканевая инженерия. 2013. Т. 8, № 3. С. 78–85
- 2. Elangovan, S. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor / S. Elangovan, S. R. D'Mello, L. Hong // Biomaterials. 2014. Vol. 35, No. 2. P. 737–747.
- 3. Ham, A. W. Repair and transplantation of bone / A. W. Ham, W. R. Harris // Biochem. Physiol. Bone. 2012. No. 3. P. 337–339
- 4. Oryan, A. Bone regenerative medicine: classic options, novel strategies, and future directions / A. Oryan, S. Alidadi, A. Moshiri [et al.] // J. Orthop. Surg. Res. 2014. No. 9. P. 18–21.
- 5. Сергеев, В. А. Метод программной ирригационно-аспирационной санации в комплексном лечении пациентов с хроническим посттравматическим остеомиелитом длинных костей / В. А. Сергеев, А. А. Глухов // Новости хирургии. 2015. Т. 23, № 5. С. 533–538.
- 6. Hart, B. Osteomyelitis (refractory) with literature review supplement / B. Hart // Undersea Hyperb. Med. 2012. Vol. 39, No. 3. P. 753–775.
- 7. Ординарные и активированные остеопластические материалы / Р. В. Деев, А. Ю. Дробышев, И. Я. Бозо // Вестн. травматологии и ортопедии им. Н. Н. Приорова. 2015. № 1. С. 51–69.
- 8. Деев, Р. В. Ординарные и активированные остеопластические материалы / Р. В. Деев, А. Ю. Дробышев, И. Я. Бозо // Вестн. травматологии и ортопедии им. Н. Н. Приорова. 2015. № 1. С. 51–69.
- 9. Hart, B. Osteomyelitis (refractory) with literature review supplement / B. Hart // Undersea Hyperb. Med. 2012. Vol. 39, No. 3. P. 753–775.
- 10. Elangovan, S. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor / S. Elangovan, S. R. D'Mello, L. Hong // Biomaterials. 2014. Vol. 35, No. 2. P. 737–747.
- 11.Довгалевич, И. И. Тактика хирургического лечения инфицированных дефектов длинных трубчатых костей / И. И. Довгалевич, А. В. Мартинович // Хирургия. Восточная Европа. 2017. Т. 6, № 2. С. 215–224.
- 12.Довгалевич, И. И. Костная пластика при инфицированных дефектах длинных трубчатых костей / И. И. Довгалевич, А. В. Мартинович // Медицинский журнал. 2016. № 4. С. 88–92.
- 13.Довгалевич, И. И. Нарушение репаративного остеогенеза при инфицированных дефектах трубчатых костей / И. И. Довгалевич // Медицинский журнал. 2017. № 2. С. 76–81.

ПЛАСТИКА ДЕФЕКТОВ КОСТИ ПРИ ОСТЕОМИЕЛИТЕ

Довгалевич И.И., Титова А.Д., Мартинович А.В.

Резюме. Проблема восполнения дефектов кости при остеомиелите является весьма актуальной. Выбор метода его замещения до сих пор остается дискутабельным. Однако, методы комбинированного воздействия остаются наиболее актуальными.

Ключевые слова: остеомиелит, дефект кости.